Properties

Label 308.2.n.b.219.2
Level $308$
Weight $2$
Character 308.219
Analytic conductor $2.459$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(219,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.219");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 219.2
Root \(1.39564 - 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 308.219
Dual form 308.2.n.b.263.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39564 + 0.228425i) q^{2} +(-2.29129 + 1.32288i) q^{3} +(1.89564 + 0.637600i) q^{4} +(-3.50000 + 1.32288i) q^{6} +(0.500000 + 2.59808i) q^{7} +(2.50000 + 1.32288i) q^{8} +(2.00000 - 3.46410i) q^{9} +(-3.29129 - 0.409175i) q^{11} +(-5.18693 + 1.04678i) q^{12} +2.64575i q^{13} +(0.104356 + 3.74020i) q^{14} +(3.18693 + 2.41733i) q^{16} +(-4.58258 + 2.64575i) q^{17} +(3.58258 - 4.37780i) q^{18} +(-4.58258 - 5.29150i) q^{21} +(-4.50000 - 1.32288i) q^{22} +(4.58258 + 2.64575i) q^{23} +(-7.47822 + 0.276100i) q^{24} +(2.50000 + 4.33013i) q^{25} +(-0.604356 + 3.69253i) q^{26} +2.64575i q^{27} +(-0.708712 + 5.24383i) q^{28} -7.93725i q^{29} +(9.16515 - 5.29150i) q^{31} +(3.89564 + 4.10170i) q^{32} +(8.08258 - 3.41643i) q^{33} +(-7.00000 + 2.64575i) q^{34} +(6.00000 - 5.29150i) q^{36} +(4.00000 - 6.92820i) q^{37} +(-3.50000 - 6.06218i) q^{39} +(-5.18693 - 8.43183i) q^{42} -2.00000 q^{43} +(-5.97822 - 2.87418i) q^{44} +(5.79129 + 4.73930i) q^{46} +(-10.5000 - 1.32288i) q^{48} +(-6.50000 + 2.59808i) q^{49} +(2.50000 + 6.61438i) q^{50} +(7.00000 - 12.1244i) q^{51} +(-1.68693 + 5.01540i) q^{52} +(2.00000 + 3.46410i) q^{53} +(-0.604356 + 3.69253i) q^{54} +(-2.18693 + 7.15663i) q^{56} +(1.81307 - 11.0776i) q^{58} +(2.29129 - 1.32288i) q^{59} +(2.29129 + 1.32288i) q^{61} +(14.0000 - 5.29150i) q^{62} +(10.0000 + 3.46410i) q^{63} +(4.50000 + 6.61438i) q^{64} +(12.0608 - 2.92185i) q^{66} +(2.29129 - 1.32288i) q^{67} +(-10.3739 + 2.09355i) q^{68} -14.0000 q^{69} -5.29150i q^{71} +(9.58258 - 6.01450i) q^{72} +(9.16515 - 5.29150i) q^{73} +(7.16515 - 8.75560i) q^{74} +(-11.4564 - 6.61438i) q^{75} +(-0.582576 - 8.75560i) q^{77} +(-3.50000 - 9.26013i) q^{78} +(-6.50000 + 11.2583i) q^{79} +(2.50000 + 4.33013i) q^{81} +(-5.31307 - 12.9527i) q^{84} +(-2.79129 - 0.456850i) q^{86} +(10.5000 + 18.1865i) q^{87} +(-7.68693 - 5.37690i) q^{88} +(7.00000 - 12.1244i) q^{89} +(-6.87386 + 1.32288i) q^{91} +(7.00000 + 7.93725i) q^{92} +(-14.0000 + 24.2487i) q^{93} +(-14.3521 - 4.24473i) q^{96} +7.00000 q^{97} +(-9.66515 + 2.14123i) q^{98} +(-8.00000 + 10.5830i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 3 q^{4} - 14 q^{6} + 2 q^{7} + 10 q^{8} + 8 q^{9} - 4 q^{11} - 7 q^{12} + 5 q^{14} - q^{16} - 4 q^{18} - 18 q^{22} - 7 q^{24} + 10 q^{25} - 7 q^{26} - 12 q^{28} + 11 q^{32} + 14 q^{33} - 28 q^{34}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39564 + 0.228425i 0.986869 + 0.161521i
\(3\) −2.29129 + 1.32288i −1.32288 + 0.763763i −0.984186 0.177136i \(-0.943317\pi\)
−0.338689 + 0.940898i \(0.609984\pi\)
\(4\) 1.89564 + 0.637600i 0.947822 + 0.318800i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) −3.50000 + 1.32288i −1.42887 + 0.540062i
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 2.50000 + 1.32288i 0.883883 + 0.467707i
\(9\) 2.00000 3.46410i 0.666667 1.15470i
\(10\) 0 0
\(11\) −3.29129 0.409175i −0.992361 0.123371i
\(12\) −5.18693 + 1.04678i −1.49734 + 0.302178i
\(13\) 2.64575i 0.733799i 0.930261 + 0.366900i \(0.119581\pi\)
−0.930261 + 0.366900i \(0.880419\pi\)
\(14\) 0.104356 + 3.74020i 0.0278903 + 0.999611i
\(15\) 0 0
\(16\) 3.18693 + 2.41733i 0.796733 + 0.604332i
\(17\) −4.58258 + 2.64575i −1.11144 + 0.641689i −0.939201 0.343367i \(-0.888433\pi\)
−0.172236 + 0.985056i \(0.555099\pi\)
\(18\) 3.58258 4.37780i 0.844421 1.03186i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 0 0
\(21\) −4.58258 5.29150i −1.00000 1.15470i
\(22\) −4.50000 1.32288i −0.959403 0.282038i
\(23\) 4.58258 + 2.64575i 0.955533 + 0.551677i 0.894795 0.446476i \(-0.147321\pi\)
0.0607377 + 0.998154i \(0.480655\pi\)
\(24\) −7.47822 + 0.276100i −1.52649 + 0.0563587i
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) −0.604356 + 3.69253i −0.118524 + 0.724164i
\(27\) 2.64575i 0.509175i
\(28\) −0.708712 + 5.24383i −0.133934 + 0.990990i
\(29\) 7.93725i 1.47391i −0.675941 0.736956i \(-0.736263\pi\)
0.675941 0.736956i \(-0.263737\pi\)
\(30\) 0 0
\(31\) 9.16515 5.29150i 1.64611 0.950382i 0.667512 0.744599i \(-0.267359\pi\)
0.978598 0.205783i \(-0.0659741\pi\)
\(32\) 3.89564 + 4.10170i 0.688659 + 0.725085i
\(33\) 8.08258 3.41643i 1.40700 0.594724i
\(34\) −7.00000 + 2.64575i −1.20049 + 0.453743i
\(35\) 0 0
\(36\) 6.00000 5.29150i 1.00000 0.881917i
\(37\) 4.00000 6.92820i 0.657596 1.13899i −0.323640 0.946180i \(-0.604907\pi\)
0.981236 0.192809i \(-0.0617599\pi\)
\(38\) 0 0
\(39\) −3.50000 6.06218i −0.560449 0.970725i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −5.18693 8.43183i −0.800361 1.30106i
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) −5.97822 2.87418i −0.901251 0.433298i
\(45\) 0 0
\(46\) 5.79129 + 4.73930i 0.853879 + 0.698772i
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −10.5000 1.32288i −1.51554 0.190941i
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 2.50000 + 6.61438i 0.353553 + 0.935414i
\(51\) 7.00000 12.1244i 0.980196 1.69775i
\(52\) −1.68693 + 5.01540i −0.233935 + 0.695511i
\(53\) 2.00000 + 3.46410i 0.274721 + 0.475831i 0.970065 0.242846i \(-0.0780811\pi\)
−0.695344 + 0.718677i \(0.744748\pi\)
\(54\) −0.604356 + 3.69253i −0.0822424 + 0.502489i
\(55\) 0 0
\(56\) −2.18693 + 7.15663i −0.292241 + 0.956345i
\(57\) 0 0
\(58\) 1.81307 11.0776i 0.238068 1.45456i
\(59\) 2.29129 1.32288i 0.298300 0.172224i −0.343379 0.939197i \(-0.611571\pi\)
0.641679 + 0.766973i \(0.278238\pi\)
\(60\) 0 0
\(61\) 2.29129 + 1.32288i 0.293369 + 0.169377i 0.639460 0.768824i \(-0.279158\pi\)
−0.346091 + 0.938201i \(0.612491\pi\)
\(62\) 14.0000 5.29150i 1.77800 0.672022i
\(63\) 10.0000 + 3.46410i 1.25988 + 0.436436i
\(64\) 4.50000 + 6.61438i 0.562500 + 0.826797i
\(65\) 0 0
\(66\) 12.0608 2.92185i 1.48458 0.359655i
\(67\) 2.29129 1.32288i 0.279925 0.161615i −0.353464 0.935448i \(-0.614996\pi\)
0.633390 + 0.773833i \(0.281663\pi\)
\(68\) −10.3739 + 2.09355i −1.25802 + 0.253880i
\(69\) −14.0000 −1.68540
\(70\) 0 0
\(71\) 5.29150i 0.627986i −0.949425 0.313993i \(-0.898333\pi\)
0.949425 0.313993i \(-0.101667\pi\)
\(72\) 9.58258 6.01450i 1.12932 0.708816i
\(73\) 9.16515 5.29150i 1.07270 0.619324i 0.143782 0.989609i \(-0.454074\pi\)
0.928918 + 0.370286i \(0.120740\pi\)
\(74\) 7.16515 8.75560i 0.832932 1.01782i
\(75\) −11.4564 6.61438i −1.32288 0.763763i
\(76\) 0 0
\(77\) −0.582576 8.75560i −0.0663907 0.997794i
\(78\) −3.50000 9.26013i −0.396297 1.04850i
\(79\) −6.50000 + 11.2583i −0.731307 + 1.26666i 0.225018 + 0.974355i \(0.427756\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) 0 0
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −5.31307 12.9527i −0.579703 1.41325i
\(85\) 0 0
\(86\) −2.79129 0.456850i −0.300992 0.0492634i
\(87\) 10.5000 + 18.1865i 1.12572 + 1.94980i
\(88\) −7.68693 5.37690i −0.819430 0.573180i
\(89\) 7.00000 12.1244i 0.741999 1.28518i −0.209585 0.977790i \(-0.567211\pi\)
0.951584 0.307389i \(-0.0994552\pi\)
\(90\) 0 0
\(91\) −6.87386 + 1.32288i −0.720577 + 0.138675i
\(92\) 7.00000 + 7.93725i 0.729800 + 0.827516i
\(93\) −14.0000 + 24.2487i −1.45173 + 2.51447i
\(94\) 0 0
\(95\) 0 0
\(96\) −14.3521 4.24473i −1.46480 0.433226i
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) −9.66515 + 2.14123i −0.976328 + 0.216296i
\(99\) −8.00000 + 10.5830i −0.804030 + 1.06363i
\(100\) 1.97822 + 9.80238i 0.197822 + 0.980238i
\(101\) −6.87386 + 3.96863i −0.683975 + 0.394893i −0.801351 0.598194i \(-0.795885\pi\)
0.117376 + 0.993088i \(0.462552\pi\)
\(102\) 12.5390 15.3223i 1.24155 1.51713i
\(103\) −4.58258 2.64575i −0.451535 0.260694i 0.256943 0.966426i \(-0.417285\pi\)
−0.708478 + 0.705733i \(0.750618\pi\)
\(104\) −3.50000 + 6.61438i −0.343203 + 0.648593i
\(105\) 0 0
\(106\) 2.00000 + 5.29150i 0.194257 + 0.513956i
\(107\) −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i \(-0.959717\pi\)
0.605308 + 0.795991i \(0.293050\pi\)
\(108\) −1.68693 + 5.01540i −0.162325 + 0.482607i
\(109\) −9.16515 + 5.29150i −0.877862 + 0.506834i −0.869953 0.493135i \(-0.835851\pi\)
−0.00790932 + 0.999969i \(0.502518\pi\)
\(110\) 0 0
\(111\) 21.1660i 2.00899i
\(112\) −4.68693 + 9.48855i −0.442873 + 0.896584i
\(113\) −19.0000 −1.78737 −0.893685 0.448695i \(-0.851889\pi\)
−0.893685 + 0.448695i \(0.851889\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.06080 15.0462i 0.469883 1.39701i
\(117\) 9.16515 + 5.29150i 0.847319 + 0.489200i
\(118\) 3.50000 1.32288i 0.322201 0.121781i
\(119\) −9.16515 10.5830i −0.840168 0.970143i
\(120\) 0 0
\(121\) 10.6652 + 2.69343i 0.969559 + 0.244857i
\(122\) 2.89564 + 2.36965i 0.262159 + 0.214538i
\(123\) 0 0
\(124\) 20.7477 4.18710i 1.86320 0.376013i
\(125\) 0 0
\(126\) 13.1652 + 7.11890i 1.17284 + 0.634202i
\(127\) −5.00000 −0.443678 −0.221839 0.975083i \(-0.571206\pi\)
−0.221839 + 0.975083i \(0.571206\pi\)
\(128\) 4.76951 + 10.2592i 0.421569 + 0.906796i
\(129\) 4.58258 2.64575i 0.403473 0.232945i
\(130\) 0 0
\(131\) 7.00000 12.1244i 0.611593 1.05931i −0.379379 0.925241i \(-0.623862\pi\)
0.990972 0.134069i \(-0.0428042\pi\)
\(132\) 17.5000 1.32288i 1.52318 0.115142i
\(133\) 0 0
\(134\) 3.50000 1.32288i 0.302354 0.114279i
\(135\) 0 0
\(136\) −14.9564 + 0.552200i −1.28250 + 0.0473508i
\(137\) −1.50000 2.59808i −0.128154 0.221969i 0.794808 0.606861i \(-0.207572\pi\)
−0.922961 + 0.384893i \(0.874238\pi\)
\(138\) −19.5390 3.19795i −1.66327 0.272228i
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.20871 7.38505i 0.101433 0.619740i
\(143\) 1.08258 8.70793i 0.0905295 0.728194i
\(144\) 14.7477 6.20520i 1.22898 0.517100i
\(145\) 0 0
\(146\) 14.0000 5.29150i 1.15865 0.437928i
\(147\) 11.4564 14.5516i 0.944911 1.20020i
\(148\) 12.0000 10.5830i 0.986394 0.869918i
\(149\) 9.16515 + 5.29150i 0.750838 + 0.433497i 0.825997 0.563675i \(-0.190613\pi\)
−0.0751583 + 0.997172i \(0.523946\pi\)
\(150\) −14.4782 11.8483i −1.18214 0.967406i
\(151\) −8.50000 14.7224i −0.691720 1.19809i −0.971274 0.237964i \(-0.923520\pi\)
0.279554 0.960130i \(-0.409814\pi\)
\(152\) 0 0
\(153\) 21.1660i 1.71117i
\(154\) 1.18693 12.3528i 0.0956457 0.995415i
\(155\) 0 0
\(156\) −2.76951 13.7233i −0.221738 1.09875i
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) −11.6434 + 14.2279i −0.926297 + 1.13191i
\(159\) −9.16515 5.29150i −0.726844 0.419643i
\(160\) 0 0
\(161\) −4.58258 + 13.2288i −0.361158 + 1.04257i
\(162\) 2.50000 + 6.61438i 0.196419 + 0.519675i
\(163\) −2.29129 1.32288i −0.179468 0.103616i 0.407575 0.913172i \(-0.366375\pi\)
−0.587042 + 0.809556i \(0.699708\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.0000 1.62503 0.812514 0.582941i \(-0.198098\pi\)
0.812514 + 0.582941i \(0.198098\pi\)
\(168\) −4.45644 19.2909i −0.343822 1.48833i
\(169\) 6.00000 0.461538
\(170\) 0 0
\(171\) 0 0
\(172\) −3.79129 1.27520i −0.289083 0.0972331i
\(173\) −11.4564 6.61438i −0.871017 0.502882i −0.00333090 0.999994i \(-0.501060\pi\)
−0.867686 + 0.497113i \(0.834394\pi\)
\(174\) 10.5000 + 27.7804i 0.796003 + 2.10603i
\(175\) −10.0000 + 8.66025i −0.755929 + 0.654654i
\(176\) −9.50000 9.26013i −0.716089 0.698009i
\(177\) −3.50000 + 6.06218i −0.263076 + 0.455661i
\(178\) 12.5390 15.3223i 0.939839 1.14846i
\(179\) −6.87386 + 3.96863i −0.513777 + 0.296629i −0.734385 0.678733i \(-0.762529\pi\)
0.220608 + 0.975363i \(0.429196\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −9.89564 + 0.276100i −0.733514 + 0.0204659i
\(183\) −7.00000 −0.517455
\(184\) 7.95644 + 12.6766i 0.586556 + 0.934528i
\(185\) 0 0
\(186\) −25.0780 + 30.6446i −1.83881 + 2.24697i
\(187\) 16.1652 6.83285i 1.18211 0.499668i
\(188\) 0 0
\(189\) −6.87386 + 1.32288i −0.500000 + 0.0962250i
\(190\) 0 0
\(191\) 9.16515 + 5.29150i 0.663167 + 0.382880i 0.793483 0.608593i \(-0.208266\pi\)
−0.130316 + 0.991473i \(0.541599\pi\)
\(192\) −19.0608 9.20250i −1.37559 0.664134i
\(193\) 18.3303 10.5830i 1.31944 0.761781i 0.335805 0.941932i \(-0.390992\pi\)
0.983639 + 0.180150i \(0.0576584\pi\)
\(194\) 9.76951 + 1.59898i 0.701410 + 0.114800i
\(195\) 0 0
\(196\) −13.9782 + 0.780626i −0.998444 + 0.0557590i
\(197\) 7.93725i 0.565506i −0.959193 0.282753i \(-0.908752\pi\)
0.959193 0.282753i \(-0.0912477\pi\)
\(198\) −13.5826 + 12.9427i −0.965272 + 0.919798i
\(199\) −9.16515 + 5.29150i −0.649700 + 0.375105i −0.788341 0.615238i \(-0.789060\pi\)
0.138641 + 0.990343i \(0.455727\pi\)
\(200\) 0.521780 + 14.1325i 0.0368954 + 0.999319i
\(201\) −3.50000 + 6.06218i −0.246871 + 0.427593i
\(202\) −10.5000 + 3.96863i −0.738777 + 0.279232i
\(203\) 20.6216 3.96863i 1.44735 0.278543i
\(204\) 21.0000 18.5203i 1.47029 1.29668i
\(205\) 0 0
\(206\) −5.79129 4.73930i −0.403498 0.330203i
\(207\) 18.3303 10.5830i 1.27404 0.735570i
\(208\) −6.39564 + 8.43183i −0.443458 + 0.584642i
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 1.58258 + 7.84190i 0.108692 + 0.538584i
\(213\) 7.00000 + 12.1244i 0.479632 + 0.830747i
\(214\) −7.16515 + 8.75560i −0.489800 + 0.598521i
\(215\) 0 0
\(216\) −3.50000 + 6.61438i −0.238145 + 0.450051i
\(217\) 18.3303 + 21.1660i 1.24434 + 1.43684i
\(218\) −14.0000 + 5.29150i −0.948200 + 0.358386i
\(219\) −14.0000 + 24.2487i −0.946032 + 1.63858i
\(220\) 0 0
\(221\) −7.00000 12.1244i −0.470871 0.815572i
\(222\) −4.83485 + 29.5402i −0.324494 + 1.98261i
\(223\) 15.8745i 1.06304i 0.847047 + 0.531518i \(0.178378\pi\)
−0.847047 + 0.531518i \(0.821622\pi\)
\(224\) −8.70871 + 12.1720i −0.581875 + 0.813278i
\(225\) 20.0000 1.33333
\(226\) −26.5172 4.34008i −1.76390 0.288698i
\(227\) −7.00000 12.1244i −0.464606 0.804722i 0.534577 0.845120i \(-0.320471\pi\)
−0.999184 + 0.0403978i \(0.987137\pi\)
\(228\) 0 0
\(229\) −7.00000 + 12.1244i −0.462573 + 0.801200i −0.999088 0.0426906i \(-0.986407\pi\)
0.536515 + 0.843891i \(0.319740\pi\)
\(230\) 0 0
\(231\) 12.9174 + 19.2909i 0.849904 + 1.26925i
\(232\) 10.5000 19.8431i 0.689359 1.30277i
\(233\) −13.7477 7.93725i −0.900644 0.519987i −0.0232346 0.999730i \(-0.507396\pi\)
−0.877409 + 0.479743i \(0.840730\pi\)
\(234\) 11.5826 + 9.47860i 0.757177 + 0.619636i
\(235\) 0 0
\(236\) 5.18693 1.04678i 0.337640 0.0681393i
\(237\) 34.3948i 2.23418i
\(238\) −10.3739 16.8637i −0.672438 1.09311i
\(239\) −19.0000 −1.22901 −0.614504 0.788914i \(-0.710644\pi\)
−0.614504 + 0.788914i \(0.710644\pi\)
\(240\) 0 0
\(241\) −4.58258 + 2.64575i −0.295190 + 0.170428i −0.640280 0.768142i \(-0.721182\pi\)
0.345090 + 0.938570i \(0.387848\pi\)
\(242\) 14.2695 + 6.19525i 0.917279 + 0.398246i
\(243\) −18.3303 10.5830i −1.17589 0.678900i
\(244\) 3.50000 + 3.96863i 0.224065 + 0.254065i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 29.9129 1.10440i 1.89947 0.0701295i
\(249\) 0 0
\(250\) 0 0
\(251\) 15.8745i 1.00199i −0.865450 0.500995i \(-0.832967\pi\)
0.865450 0.500995i \(-0.167033\pi\)
\(252\) 16.7477 + 12.9427i 1.05501 + 0.815314i
\(253\) −14.0000 10.5830i −0.880172 0.665348i
\(254\) −6.97822 1.14213i −0.437852 0.0716633i
\(255\) 0 0
\(256\) 4.31307 + 15.4077i 0.269567 + 0.962982i
\(257\) 3.50000 6.06218i 0.218324 0.378148i −0.735972 0.677012i \(-0.763274\pi\)
0.954296 + 0.298864i \(0.0966077\pi\)
\(258\) 7.00000 2.64575i 0.435801 0.164717i
\(259\) 20.0000 + 6.92820i 1.24274 + 0.430498i
\(260\) 0 0
\(261\) −27.4955 15.8745i −1.70193 0.982607i
\(262\) 12.5390 15.3223i 0.774663 0.946615i
\(263\) −5.50000 9.52628i −0.339145 0.587416i 0.645128 0.764075i \(-0.276804\pi\)
−0.984272 + 0.176659i \(0.943471\pi\)
\(264\) 24.7259 + 2.15118i 1.52178 + 0.132396i
\(265\) 0 0
\(266\) 0 0
\(267\) 37.0405i 2.26684i
\(268\) 5.18693 1.04678i 0.316842 0.0639420i
\(269\) −14.0000 24.2487i −0.853595 1.47847i −0.877942 0.478766i \(-0.841084\pi\)
0.0243472 0.999704i \(-0.492249\pi\)
\(270\) 0 0
\(271\) 3.50000 6.06218i 0.212610 0.368251i −0.739921 0.672694i \(-0.765137\pi\)
0.952531 + 0.304443i \(0.0984703\pi\)
\(272\) −21.0000 2.64575i −1.27331 0.160422i
\(273\) 14.0000 12.1244i 0.847319 0.733799i
\(274\) −1.50000 3.96863i −0.0906183 0.239754i
\(275\) −6.45644 15.2746i −0.389338 0.921095i
\(276\) −26.5390 8.92640i −1.59746 0.537306i
\(277\) 11.4564 6.61438i 0.688351 0.397419i −0.114643 0.993407i \(-0.536572\pi\)
0.802994 + 0.595987i \(0.203239\pi\)
\(278\) −19.5390 3.19795i −1.17187 0.191800i
\(279\) 42.3320i 2.53435i
\(280\) 0 0
\(281\) 15.8745i 0.946994i 0.880795 + 0.473497i \(0.157008\pi\)
−0.880795 + 0.473497i \(0.842992\pi\)
\(282\) 0 0
\(283\) 14.0000 + 24.2487i 0.832214 + 1.44144i 0.896279 + 0.443491i \(0.146260\pi\)
−0.0640654 + 0.997946i \(0.520407\pi\)
\(284\) 3.37386 10.0308i 0.200202 0.595219i
\(285\) 0 0
\(286\) 3.50000 11.9059i 0.206959 0.704009i
\(287\) 0 0
\(288\) 22.0000 5.29150i 1.29636 0.311805i
\(289\) 5.50000 9.52628i 0.323529 0.560369i
\(290\) 0 0
\(291\) −16.0390 + 9.26013i −0.940224 + 0.542838i
\(292\) 20.7477 4.18710i 1.21417 0.245032i
\(293\) 21.1660i 1.23653i 0.785969 + 0.618266i \(0.212164\pi\)
−0.785969 + 0.618266i \(0.787836\pi\)
\(294\) 19.3131 17.6920i 1.12636 1.03182i
\(295\) 0 0
\(296\) 19.1652 12.0290i 1.11395 0.699172i
\(297\) 1.08258 8.70793i 0.0628174 0.505285i
\(298\) 11.5826 + 9.47860i 0.670961 + 0.549081i
\(299\) −7.00000 + 12.1244i −0.404820 + 0.701170i
\(300\) −17.5000 19.8431i −1.01036 1.14564i
\(301\) −1.00000 5.19615i −0.0576390 0.299501i
\(302\) −8.50000 22.4889i −0.489120 1.29409i
\(303\) 10.5000 18.1865i 0.603209 1.04479i
\(304\) 0 0
\(305\) 0 0
\(306\) −4.83485 + 29.5402i −0.276390 + 1.68870i
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 4.47822 16.9690i 0.255170 0.966896i
\(309\) 14.0000 0.796432
\(310\) 0 0
\(311\) −9.16515 + 5.29150i −0.519708 + 0.300054i −0.736815 0.676094i \(-0.763671\pi\)
0.217107 + 0.976148i \(0.430338\pi\)
\(312\) −0.730493 19.7855i −0.0413560 1.12013i
\(313\) 10.5000 18.1865i 0.593495 1.02796i −0.400262 0.916401i \(-0.631081\pi\)
0.993757 0.111563i \(-0.0355857\pi\)
\(314\) 7.00000 + 18.5203i 0.395033 + 1.04516i
\(315\) 0 0
\(316\) −19.5000 + 17.1974i −1.09696 + 0.967428i
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) −11.5826 9.47860i −0.649519 0.531534i
\(319\) −3.24773 + 26.1238i −0.181838 + 1.46265i
\(320\) 0 0
\(321\) 21.1660i 1.18137i
\(322\) −9.41742 + 17.4159i −0.524813 + 0.970548i
\(323\) 0 0
\(324\) 1.97822 + 9.80238i 0.109901 + 0.544577i
\(325\) −11.4564 + 6.61438i −0.635489 + 0.366900i
\(326\) −2.89564 2.36965i −0.160375 0.131243i
\(327\) 14.0000 24.2487i 0.774202 1.34096i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.6216 + 11.9059i 1.13347 + 0.654406i 0.944804 0.327636i \(-0.106252\pi\)
0.188661 + 0.982042i \(0.439585\pi\)
\(332\) 0 0
\(333\) −16.0000 27.7128i −0.876795 1.51865i
\(334\) 29.3085 + 4.79693i 1.60369 + 0.262476i
\(335\) 0 0
\(336\) −1.81307 27.9412i −0.0989110 1.52432i
\(337\) 15.8745i 0.864740i −0.901696 0.432370i \(-0.857678\pi\)
0.901696 0.432370i \(-0.142322\pi\)
\(338\) 8.37386 + 1.37055i 0.455478 + 0.0745481i
\(339\) 43.5345 25.1346i 2.36447 1.36513i
\(340\) 0 0
\(341\) −32.3303 + 13.6657i −1.75078 + 0.740039i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −5.00000 2.64575i −0.269582 0.142649i
\(345\) 0 0
\(346\) −14.4782 11.8483i −0.778354 0.636966i
\(347\) 9.00000 + 15.5885i 0.483145 + 0.836832i 0.999813 0.0193540i \(-0.00616095\pi\)
−0.516667 + 0.856186i \(0.672828\pi\)
\(348\) 8.30852 + 41.1700i 0.445384 + 2.20694i
\(349\) 10.5830i 0.566495i −0.959047 0.283248i \(-0.908588\pi\)
0.959047 0.283248i \(-0.0914118\pi\)
\(350\) −15.9347 + 9.80238i −0.851743 + 0.523959i
\(351\) −7.00000 −0.373632
\(352\) −11.1434 15.0939i −0.593944 0.804507i
\(353\) −7.00000 12.1244i −0.372572 0.645314i 0.617388 0.786659i \(-0.288191\pi\)
−0.989960 + 0.141344i \(0.954858\pi\)
\(354\) −6.26951 + 7.66115i −0.333221 + 0.407186i
\(355\) 0 0
\(356\) 21.0000 18.5203i 1.11300 0.981572i
\(357\) 35.0000 + 12.1244i 1.85240 + 0.641689i
\(358\) −10.5000 + 3.96863i −0.554942 + 0.209748i
\(359\) 7.50000 12.9904i 0.395835 0.685606i −0.597372 0.801964i \(-0.703789\pi\)
0.993207 + 0.116358i \(0.0371219\pi\)
\(360\) 0 0
\(361\) 9.50000 + 16.4545i 0.500000 + 0.866025i
\(362\) 0 0
\(363\) −28.0000 + 7.93725i −1.46962 + 0.416598i
\(364\) −13.8739 1.87508i −0.727188 0.0982807i
\(365\) 0 0
\(366\) −9.76951 1.59898i −0.510660 0.0835798i
\(367\) −13.7477 + 7.93725i −0.717626 + 0.414321i −0.813878 0.581036i \(-0.802648\pi\)
0.0962526 + 0.995357i \(0.469314\pi\)
\(368\) 8.20871 + 19.5094i 0.427909 + 1.01700i
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00000 + 6.92820i −0.415339 + 0.359694i
\(372\) −42.0000 + 37.0405i −2.17760 + 1.92046i
\(373\) −20.6216 11.9059i −1.06775 0.616463i −0.140181 0.990126i \(-0.544768\pi\)
−0.927565 + 0.373663i \(0.878102\pi\)
\(374\) 24.1216 5.84370i 1.24730 0.302171i
\(375\) 0 0
\(376\) 0 0
\(377\) 21.0000 1.08156
\(378\) −9.89564 + 0.276100i −0.508977 + 0.0142011i
\(379\) 18.5203i 0.951322i −0.879629 0.475661i \(-0.842209\pi\)
0.879629 0.475661i \(-0.157791\pi\)
\(380\) 0 0
\(381\) 11.4564 6.61438i 0.586931 0.338865i
\(382\) 11.5826 + 9.47860i 0.592616 + 0.484968i
\(383\) 13.7477 + 7.93725i 0.702476 + 0.405575i 0.808269 0.588813i \(-0.200405\pi\)
−0.105793 + 0.994388i \(0.533738\pi\)
\(384\) −24.5000 17.1974i −1.25026 0.877600i
\(385\) 0 0
\(386\) 28.0000 10.5830i 1.42516 0.538661i
\(387\) −4.00000 + 6.92820i −0.203331 + 0.352180i
\(388\) 13.2695 + 4.46320i 0.673657 + 0.226585i
\(389\) −9.00000 15.5885i −0.456318 0.790366i 0.542445 0.840091i \(-0.317499\pi\)
−0.998763 + 0.0497253i \(0.984165\pi\)
\(390\) 0 0
\(391\) −28.0000 −1.41602
\(392\) −19.6869 2.10350i −0.994340 0.106243i
\(393\) 37.0405i 1.86845i
\(394\) 1.81307 11.0776i 0.0913411 0.558080i
\(395\) 0 0
\(396\) −21.9129 + 14.9608i −1.10116 + 0.751809i
\(397\) −14.0000 + 24.2487i −0.702640 + 1.21701i 0.264897 + 0.964277i \(0.414662\pi\)
−0.967537 + 0.252731i \(0.918671\pi\)
\(398\) −14.0000 + 5.29150i −0.701757 + 0.265239i
\(399\) 0 0
\(400\) −2.50000 + 19.8431i −0.125000 + 0.992157i
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) −6.26951 + 7.66115i −0.312695 + 0.382104i
\(403\) 14.0000 + 24.2487i 0.697390 + 1.20791i
\(404\) −15.5608 + 3.14033i −0.774179 + 0.156237i
\(405\) 0 0
\(406\) 29.6869 0.828301i 1.47334 0.0411079i
\(407\) −16.0000 + 21.1660i −0.793091 + 1.04916i
\(408\) 33.5390 21.0508i 1.66043 1.04217i
\(409\) −32.0780 + 18.5203i −1.58616 + 0.915768i −0.592224 + 0.805773i \(0.701750\pi\)
−0.993932 + 0.109995i \(0.964917\pi\)
\(410\) 0 0
\(411\) 6.87386 + 3.96863i 0.339063 + 0.195758i
\(412\) −7.00000 7.93725i −0.344865 0.391040i
\(413\) 4.58258 + 5.29150i 0.225494 + 0.260378i
\(414\) 28.0000 10.5830i 1.37612 0.520126i
\(415\) 0 0
\(416\) −10.8521 + 10.3069i −0.532067 + 0.505338i
\(417\) 32.0780 18.5203i 1.57087 0.906941i
\(418\) 0 0
\(419\) 5.29150i 0.258507i 0.991612 + 0.129253i \(0.0412581\pi\)
−0.991612 + 0.129253i \(0.958742\pi\)
\(420\) 0 0
\(421\) 12.0000 0.584844 0.292422 0.956289i \(-0.405539\pi\)
0.292422 + 0.956289i \(0.405539\pi\)
\(422\) 2.79129 + 0.456850i 0.135878 + 0.0222391i
\(423\) 0 0
\(424\) 0.417424 + 11.3060i 0.0202719 + 0.549068i
\(425\) −22.9129 13.2288i −1.11144 0.641689i
\(426\) 7.00000 + 18.5203i 0.339151 + 0.897309i
\(427\) −2.29129 + 6.61438i −0.110883 + 0.320092i
\(428\) −12.0000 + 10.5830i −0.580042 + 0.511549i
\(429\) 9.03901 + 21.3845i 0.436408 + 1.03245i
\(430\) 0 0
\(431\) −1.50000 2.59808i −0.0722525 0.125145i 0.827636 0.561266i \(-0.189685\pi\)
−0.899888 + 0.436121i \(0.856352\pi\)
\(432\) −6.39564 + 8.43183i −0.307711 + 0.405677i
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 20.7477 + 33.7273i 0.995923 + 1.61896i
\(435\) 0 0
\(436\) −20.7477 + 4.18710i −0.993636 + 0.200526i
\(437\) 0 0
\(438\) −25.0780 + 30.6446i −1.19827 + 1.46426i
\(439\) 17.5000 30.3109i 0.835229 1.44666i −0.0586141 0.998281i \(-0.518668\pi\)
0.893843 0.448379i \(-0.147999\pi\)
\(440\) 0 0
\(441\) −4.00000 + 27.7128i −0.190476 + 1.31966i
\(442\) −7.00000 18.5203i −0.332956 0.880919i
\(443\) 32.0780 + 18.5203i 1.52407 + 0.879924i 0.999594 + 0.0285009i \(0.00907336\pi\)
0.524479 + 0.851423i \(0.324260\pi\)
\(444\) −13.4955 + 40.1232i −0.640466 + 1.90416i
\(445\) 0 0
\(446\) −3.62614 + 22.1552i −0.171703 + 1.04908i
\(447\) −28.0000 −1.32435
\(448\) −14.9347 + 14.9985i −0.705596 + 0.708614i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 27.9129 + 4.56850i 1.31583 + 0.215361i
\(451\) 0 0
\(452\) −36.0172 12.1144i −1.69411 0.569814i
\(453\) 38.9519 + 22.4889i 1.83012 + 1.05662i
\(454\) −7.00000 18.5203i −0.328526 0.869199i
\(455\) 0 0
\(456\) 0 0
\(457\) −4.58258 2.64575i −0.214364 0.123763i 0.388974 0.921249i \(-0.372830\pi\)
−0.603338 + 0.797486i \(0.706163\pi\)
\(458\) −12.5390 + 15.3223i −0.585910 + 0.715964i
\(459\) −7.00000 12.1244i −0.326732 0.565916i
\(460\) 0 0
\(461\) 7.93725i 0.369675i 0.982769 + 0.184837i \(0.0591758\pi\)
−0.982769 + 0.184837i \(0.940824\pi\)
\(462\) 13.6216 + 29.8739i 0.633734 + 1.38986i
\(463\) 21.1660i 0.983668i −0.870689 0.491834i \(-0.836327\pi\)
0.870689 0.491834i \(-0.163673\pi\)
\(464\) 19.1869 25.2955i 0.890731 1.17431i
\(465\) 0 0
\(466\) −17.3739 14.2179i −0.804829 0.658632i
\(467\) −13.7477 7.93725i −0.636169 0.367292i 0.146968 0.989141i \(-0.453048\pi\)
−0.783137 + 0.621849i \(0.786382\pi\)
\(468\) 14.0000 + 15.8745i 0.647150 + 0.733799i
\(469\) 4.58258 + 5.29150i 0.211604 + 0.244339i
\(470\) 0 0
\(471\) −32.0780 18.5203i −1.47808 0.853368i
\(472\) 7.47822 0.276100i 0.344213 0.0127085i
\(473\) 6.58258 + 0.818350i 0.302667 + 0.0376278i
\(474\) 7.85663 48.0028i 0.360867 2.20484i
\(475\) 0 0
\(476\) −10.6261 25.9053i −0.487048 1.18737i
\(477\) 16.0000 0.732590
\(478\) −26.5172 4.34008i −1.21287 0.198511i
\(479\) −10.5000 18.1865i −0.479757 0.830964i 0.519973 0.854183i \(-0.325942\pi\)
−0.999730 + 0.0232187i \(0.992609\pi\)
\(480\) 0 0
\(481\) 18.3303 + 10.5830i 0.835790 + 0.482544i
\(482\) −7.00000 + 2.64575i −0.318841 + 0.120511i
\(483\) −7.00000 36.3731i −0.318511 1.65503i
\(484\) 18.5000 + 11.9059i 0.840909 + 0.541176i
\(485\) 0 0
\(486\) −23.1652 18.9572i −1.05079 0.859916i
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 3.97822 + 6.33828i 0.180086 + 0.286920i
\(489\) 7.00000 0.316551
\(490\) 0 0
\(491\) 26.0000 1.17336 0.586682 0.809818i \(-0.300434\pi\)
0.586682 + 0.809818i \(0.300434\pi\)
\(492\) 0 0
\(493\) 21.0000 + 36.3731i 0.945792 + 1.63816i
\(494\) 0 0
\(495\) 0 0
\(496\) 42.0000 + 5.29150i 1.88586 + 0.237595i
\(497\) 13.7477 2.64575i 0.616670 0.118678i
\(498\) 0 0
\(499\) −22.9129 13.2288i −1.02572 0.592200i −0.109965 0.993935i \(-0.535074\pi\)
−0.915756 + 0.401735i \(0.868407\pi\)
\(500\) 0 0
\(501\) −48.1170 + 27.7804i −2.14971 + 1.24114i
\(502\) 3.62614 22.1552i 0.161842 0.988833i
\(503\) 7.00000 0.312115 0.156057 0.987748i \(-0.450122\pi\)
0.156057 + 0.987748i \(0.450122\pi\)
\(504\) 20.4174 + 21.8890i 0.909464 + 0.975014i
\(505\) 0 0
\(506\) −17.1216 17.9681i −0.761148 0.798778i
\(507\) −13.7477 + 7.93725i −0.610558 + 0.352506i
\(508\) −9.47822 3.18800i −0.420528 0.141445i
\(509\) 7.00000 12.1244i 0.310270 0.537403i −0.668151 0.744026i \(-0.732914\pi\)
0.978421 + 0.206623i \(0.0662474\pi\)
\(510\) 0 0
\(511\) 18.3303 + 21.1660i 0.810885 + 0.936329i
\(512\) 2.50000 + 22.4889i 0.110485 + 0.993878i
\(513\) 0 0
\(514\) 6.26951 7.66115i 0.276536 0.337919i
\(515\) 0 0
\(516\) 10.3739 2.09355i 0.456684 0.0921634i
\(517\) 0 0
\(518\) 26.3303 + 14.2378i 1.15689 + 0.625573i
\(519\) 35.0000 1.53633
\(520\) 0 0
\(521\) 21.0000 + 36.3731i 0.920027 + 1.59353i 0.799370 + 0.600839i \(0.205167\pi\)
0.120656 + 0.992694i \(0.461500\pi\)
\(522\) −34.7477 28.4358i −1.52087 1.24460i
\(523\) −7.00000 + 12.1244i −0.306089 + 0.530161i −0.977503 0.210921i \(-0.932354\pi\)
0.671414 + 0.741082i \(0.265687\pi\)
\(524\) 21.0000 18.5203i 0.917389 0.809061i
\(525\) 11.4564 33.0719i 0.500000 1.44338i
\(526\) −5.50000 14.5516i −0.239811 0.634481i
\(527\) −28.0000 + 48.4974i −1.21970 + 2.11258i
\(528\) 34.0172 + 8.65030i 1.48041 + 0.376456i
\(529\) 2.50000 + 4.33013i 0.108696 + 0.188266i
\(530\) 0 0
\(531\) 10.5830i 0.459263i
\(532\) 0 0
\(533\) 0 0
\(534\) −8.46099 + 51.6954i −0.366143 + 2.23708i
\(535\) 0 0
\(536\) 7.47822 0.276100i 0.323010 0.0119257i
\(537\) 10.5000 18.1865i 0.453108 0.784807i
\(538\) −14.0000 37.0405i −0.603583 1.59693i
\(539\) 22.4564 5.89138i 0.967267 0.253760i
\(540\) 0 0
\(541\) 20.6216 + 11.9059i 0.886591 + 0.511874i 0.872826 0.488031i \(-0.162285\pi\)
0.0137654 + 0.999905i \(0.495618\pi\)
\(542\) 6.26951 7.66115i 0.269298 0.329075i
\(543\) 0 0
\(544\) −28.7042 8.48945i −1.23068 0.363982i
\(545\) 0 0
\(546\) 22.3085 13.7233i 0.954717 0.587304i
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) −1.18693 5.88143i −0.0507032 0.251242i
\(549\) 9.16515 5.29150i 0.391159 0.225836i
\(550\) −5.52178 22.7928i −0.235450 0.971887i
\(551\) 0 0
\(552\) −35.0000 18.5203i −1.48970 0.788275i
\(553\) −32.5000 11.2583i −1.38204 0.478753i
\(554\) 17.5000 6.61438i 0.743504 0.281018i
\(555\) 0 0
\(556\) −26.5390 8.92640i −1.12550 0.378564i
\(557\) −9.16515 + 5.29150i −0.388340 + 0.224208i −0.681441 0.731873i \(-0.738646\pi\)
0.293101 + 0.956082i \(0.405313\pi\)
\(558\) 9.66970 59.0804i 0.409351 2.50107i
\(559\) 5.29150i 0.223807i
\(560\) 0 0
\(561\) −28.0000 + 37.0405i −1.18216 + 1.56385i
\(562\) −3.62614 + 22.1552i −0.152959 + 0.934559i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 14.0000 + 37.0405i 0.588464 + 1.55693i
\(567\) −10.0000 + 8.66025i −0.419961 + 0.363696i
\(568\) 7.00000 13.2288i 0.293713 0.555066i
\(569\) 27.4955 + 15.8745i 1.15267 + 0.665494i 0.949536 0.313657i \(-0.101554\pi\)
0.203133 + 0.979151i \(0.434888\pi\)
\(570\) 0 0
\(571\) −9.00000 15.5885i −0.376638 0.652357i 0.613933 0.789359i \(-0.289587\pi\)
−0.990571 + 0.137002i \(0.956253\pi\)
\(572\) 7.60436 15.8169i 0.317954 0.661337i
\(573\) −28.0000 −1.16972
\(574\) 0 0
\(575\) 26.4575i 1.10335i
\(576\) 31.9129 2.35970i 1.32970 0.0983209i
\(577\) −17.5000 30.3109i −0.728535 1.26186i −0.957503 0.288425i \(-0.906868\pi\)
0.228968 0.973434i \(-0.426465\pi\)
\(578\) 9.85208 12.0390i 0.409793 0.500755i
\(579\) −28.0000 + 48.4974i −1.16364 + 2.01548i
\(580\) 0 0
\(581\) 0 0
\(582\) −24.5000 + 9.26013i −1.01556 + 0.383845i
\(583\) −5.16515 12.2197i −0.213919 0.506089i
\(584\) 29.9129 1.10440i 1.23780 0.0457004i
\(585\) 0 0
\(586\) −4.83485 + 29.5402i −0.199726 + 1.22029i
\(587\) 7.93725i 0.327606i −0.986493 0.163803i \(-0.947624\pi\)
0.986493 0.163803i \(-0.0523761\pi\)
\(588\) 30.9955 20.2801i 1.27823 0.836337i
\(589\) 0 0
\(590\) 0 0
\(591\) 10.5000 + 18.1865i 0.431912 + 0.748094i
\(592\) 29.4955 12.4104i 1.21226 0.510065i
\(593\) −13.7477 7.93725i −0.564551 0.325944i 0.190419 0.981703i \(-0.439015\pi\)
−0.754970 + 0.655759i \(0.772349\pi\)
\(594\) 3.50000 11.9059i 0.143607 0.488504i
\(595\) 0 0
\(596\) 14.0000 + 15.8745i 0.573462 + 0.650245i
\(597\) 14.0000 24.2487i 0.572982 0.992434i
\(598\) −12.5390 + 15.3223i −0.512758 + 0.626576i
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) −19.8911 31.6914i −0.812051 1.29380i
\(601\) 42.3320i 1.72676i −0.504555 0.863380i \(-0.668343\pi\)
0.504555 0.863380i \(-0.331657\pi\)
\(602\) −0.208712 7.48040i −0.00850647 0.304878i
\(603\) 10.5830i 0.430973i
\(604\) −6.72595 33.3281i −0.273675 1.35610i
\(605\) 0 0
\(606\) 18.8085 22.9835i 0.764044 0.933639i
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) 0 0
\(609\) −42.0000 + 36.3731i −1.70193 + 1.47391i
\(610\) 0 0
\(611\) 0 0
\(612\) −13.4955 + 40.1232i −0.545521 + 1.62189i
\(613\) −36.6606 + 21.1660i −1.48071 + 0.854887i −0.999761 0.0218626i \(-0.993040\pi\)
−0.480947 + 0.876750i \(0.659707\pi\)
\(614\) 39.0780 + 6.39590i 1.57706 + 0.258118i
\(615\) 0 0
\(616\) 10.1261 22.6597i 0.407994 0.912985i
\(617\) −23.0000 −0.925945 −0.462973 0.886373i \(-0.653217\pi\)
−0.462973 + 0.886373i \(0.653217\pi\)
\(618\) 19.5390 + 3.19795i 0.785974 + 0.128640i
\(619\) −4.58258 + 2.64575i −0.184189 + 0.106342i −0.589259 0.807944i \(-0.700580\pi\)
0.405070 + 0.914286i \(0.367247\pi\)
\(620\) 0 0
\(621\) −7.00000 + 12.1244i −0.280900 + 0.486534i
\(622\) −14.0000 + 5.29150i −0.561349 + 0.212170i
\(623\) 35.0000 + 12.1244i 1.40225 + 0.485752i
\(624\) 3.50000 27.7804i 0.140112 1.11211i
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 18.8085 22.9835i 0.751740 0.918604i
\(627\) 0 0
\(628\) 5.53901 + 27.4467i 0.221031 + 1.09524i
\(629\) 42.3320i 1.68789i
\(630\) 0 0
\(631\) 26.4575i 1.05326i −0.850096 0.526628i \(-0.823456\pi\)
0.850096 0.526628i \(-0.176544\pi\)
\(632\) −31.1434 + 19.5471i −1.23882 + 0.777543i
\(633\) −4.58258 + 2.64575i −0.182141 + 0.105159i
\(634\) 5.37386 6.56670i 0.213423 0.260797i
\(635\) 0 0
\(636\) −14.0000 15.8745i −0.555136 0.629465i
\(637\) −6.87386 17.1974i −0.272352 0.681385i
\(638\) −10.5000 + 35.7176i −0.415699 + 1.41408i
\(639\) −18.3303 10.5830i −0.725136 0.418657i
\(640\) 0 0
\(641\) 5.50000 + 9.52628i 0.217237 + 0.376265i 0.953962 0.299927i \(-0.0969622\pi\)
−0.736725 + 0.676192i \(0.763629\pi\)
\(642\) 4.83485 29.5402i 0.190816 1.16586i
\(643\) 18.5203i 0.730368i 0.930935 + 0.365184i \(0.118994\pi\)
−0.930935 + 0.365184i \(0.881006\pi\)
\(644\) −17.1216 + 22.1552i −0.674685 + 0.873036i
\(645\) 0 0
\(646\) 0 0
\(647\) −27.4955 + 15.8745i −1.08096 + 0.624091i −0.931155 0.364625i \(-0.881197\pi\)
−0.149803 + 0.988716i \(0.547864\pi\)
\(648\) 0.521780 + 14.1325i 0.0204975 + 0.555177i
\(649\) −8.08258 + 3.41643i −0.317269 + 0.134106i
\(650\) −17.5000 + 6.61438i −0.686406 + 0.259437i
\(651\) −70.0000 24.2487i −2.74352 0.950382i
\(652\) −3.50000 3.96863i −0.137071 0.155423i
\(653\) −4.00000 + 6.92820i −0.156532 + 0.271122i −0.933616 0.358276i \(-0.883365\pi\)
0.777084 + 0.629397i \(0.216698\pi\)
\(654\) 25.0780 30.6446i 0.980629 1.19830i
\(655\) 0 0
\(656\) 0 0
\(657\) 42.3320i 1.65153i
\(658\) 0 0
\(659\) 26.0000 1.01282 0.506408 0.862294i \(-0.330973\pi\)
0.506408 + 0.862294i \(0.330973\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 26.0608 + 21.3269i 1.01288 + 0.828892i
\(663\) 32.0780 + 18.5203i 1.24581 + 0.719267i
\(664\) 0 0
\(665\) 0 0
\(666\) −16.0000 42.3320i −0.619987 1.64033i
\(667\) 21.0000 36.3731i 0.813123 1.40837i
\(668\) 39.8085 + 13.3896i 1.54024 + 0.518059i
\(669\) −21.0000 36.3731i −0.811907 1.40626i
\(670\) 0 0
\(671\) −7.00000 5.29150i −0.270232 0.204276i
\(672\) 3.85208 39.4102i 0.148597 1.52028i
\(673\) 31.7490i 1.22383i −0.790922 0.611917i \(-0.790399\pi\)
0.790922 0.611917i \(-0.209601\pi\)
\(674\) 3.62614 22.1552i 0.139674 0.853385i
\(675\) −11.4564 + 6.61438i −0.440959 + 0.254588i
\(676\) 11.3739 + 3.82560i 0.437456 + 0.147139i
\(677\) 27.4955 + 15.8745i 1.05674 + 0.610107i 0.924528 0.381115i \(-0.124460\pi\)
0.132209 + 0.991222i \(0.457793\pi\)
\(678\) 66.5000 25.1346i 2.55392 0.965290i
\(679\) 3.50000 + 18.1865i 0.134318 + 0.697935i
\(680\) 0 0
\(681\) 32.0780 + 18.5203i 1.22923 + 0.709698i
\(682\) −48.2432 + 11.6874i −1.84733 + 0.447534i
\(683\) −20.6216 + 11.9059i −0.789063 + 0.455566i −0.839633 0.543155i \(-0.817230\pi\)
0.0505694 + 0.998721i \(0.483896\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −10.3956 24.0402i −0.396908 0.917859i
\(687\) 37.0405i 1.41318i
\(688\) −6.37386 4.83465i −0.243001 0.184319i
\(689\) −9.16515 + 5.29150i −0.349164 + 0.201590i
\(690\) 0 0
\(691\) 2.29129 + 1.32288i 0.0871647 + 0.0503246i 0.542949 0.839766i \(-0.317308\pi\)
−0.455784 + 0.890090i \(0.650641\pi\)
\(692\) −17.5000 19.8431i −0.665250 0.754323i
\(693\) −31.4955 15.4931i −1.19641 0.588534i
\(694\) 9.00000 + 23.8118i 0.341635 + 0.903882i
\(695\) 0 0
\(696\) 2.19148 + 59.3565i 0.0830677 + 2.24990i
\(697\) 0 0
\(698\) 2.41742 14.7701i 0.0915009 0.559057i
\(699\) 42.0000 1.58859
\(700\) −24.4782 + 10.0408i −0.925190 + 0.379505i
\(701\) 34.3948i 1.29907i −0.760331 0.649536i \(-0.774963\pi\)
0.760331 0.649536i \(-0.225037\pi\)
\(702\) −9.76951 1.59898i −0.368726 0.0603495i
\(703\) 0 0
\(704\) −12.1044 23.6111i −0.456200 0.889877i
\(705\) 0 0
\(706\) −7.00000 18.5203i −0.263448 0.697019i
\(707\) −13.7477 15.8745i −0.517036 0.597022i
\(708\) −10.5000 + 9.26013i −0.394614 + 0.348017i
\(709\) −4.00000 + 6.92820i −0.150223 + 0.260194i −0.931309 0.364229i \(-0.881333\pi\)
0.781086 + 0.624423i \(0.214666\pi\)
\(710\) 0 0
\(711\) 26.0000 + 45.0333i 0.975076 + 1.68888i
\(712\) 33.5390 21.0508i 1.25693 0.788911i
\(713\) 56.0000 2.09722
\(714\) 46.0780 + 24.9162i 1.72443 + 0.932464i
\(715\) 0 0
\(716\) −15.5608 + 3.14033i −0.581534 + 0.117360i
\(717\) 43.5345 25.1346i 1.62582 0.938670i
\(718\) 13.4347 16.4168i 0.501377 0.612668i
\(719\) 27.4955 + 15.8745i 1.02541 + 0.592019i 0.915666 0.401941i \(-0.131664\pi\)
0.109742 + 0.993960i \(0.464998\pi\)
\(720\) 0 0
\(721\) 4.58258 13.2288i 0.170664 0.492665i
\(722\) 9.50000 + 25.1346i 0.353553 + 0.935414i
\(723\) 7.00000 12.1244i 0.260333 0.450910i
\(724\) 0 0
\(725\) 34.3693 19.8431i 1.27644 0.736956i
\(726\) −40.8911 + 4.68168i −1.51761 + 0.173753i
\(727\) 21.1660i 0.785004i −0.919751 0.392502i \(-0.871610\pi\)
0.919751 0.392502i \(-0.128390\pi\)
\(728\) −18.9347 5.78608i −0.701765 0.214446i
\(729\) 41.0000 1.51852
\(730\) 0 0
\(731\) 9.16515 5.29150i 0.338985 0.195713i
\(732\) −13.2695 4.46320i −0.490455 0.164965i
\(733\) 11.4564 + 6.61438i 0.423153 + 0.244308i 0.696426 0.717629i \(-0.254773\pi\)
−0.273272 + 0.961937i \(0.588106\pi\)
\(734\) −21.0000 + 7.93725i −0.775124 + 0.292969i
\(735\) 0 0
\(736\) 7.00000 + 29.1033i 0.258023 + 1.07276i
\(737\) −8.08258 + 3.41643i −0.297726 + 0.125846i
\(738\) 0 0
\(739\) −23.0000 39.8372i −0.846069 1.46543i −0.884690 0.466180i \(-0.845630\pi\)
0.0386212 0.999254i \(-0.487703\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −12.7477 + 7.84190i −0.467984 + 0.287885i
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) −67.0780 + 42.1015i −2.45920 + 1.54352i
\(745\) 0 0
\(746\) −26.0608 21.3269i −0.954154 0.780832i
\(747\) 0 0
\(748\) 35.0000 2.64575i 1.27973 0.0967382i
\(749\) −20.0000 6.92820i −0.730784 0.253151i
\(750\) 0 0
\(751\) −41.2432 23.8118i −1.50499 0.868904i −0.999983 0.00578524i \(-0.998158\pi\)
−0.505002 0.863118i \(-0.668508\pi\)
\(752\) 0 0
\(753\) 21.0000 + 36.3731i 0.765283 + 1.32551i
\(754\) 29.3085 + 4.79693i 1.06735 + 0.174694i
\(755\) 0 0
\(756\) −13.8739 1.87508i −0.504588 0.0681959i
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 4.23049 25.8477i 0.153658 0.938830i
\(759\) 46.0780 + 5.72845i 1.67253 + 0.207930i
\(760\) 0 0
\(761\) −13.7477 7.93725i −0.498355 0.287725i 0.229679 0.973266i \(-0.426232\pi\)
−0.728034 + 0.685541i \(0.759566\pi\)
\(762\) 17.5000 6.61438i 0.633958 0.239614i
\(763\) −18.3303 21.1660i −0.663602 0.766261i
\(764\) 14.0000 + 15.8745i 0.506502 + 0.574320i
\(765\) 0 0
\(766\) 17.3739 + 14.2179i 0.627743 + 0.513714i
\(767\) 3.50000 + 6.06218i 0.126378 + 0.218893i
\(768\) −30.2650 29.5978i −1.09209 1.06802i
\(769\) 47.6235i 1.71735i 0.512522 + 0.858674i \(0.328711\pi\)
−0.512522 + 0.858674i \(0.671289\pi\)
\(770\) 0 0
\(771\) 18.5203i 0.666991i
\(772\) 41.4955 8.37420i 1.49345 0.301394i
\(773\) 7.00000 + 12.1244i 0.251773 + 0.436083i 0.964014 0.265852i \(-0.0856532\pi\)
−0.712241 + 0.701935i \(0.752320\pi\)
\(774\) −7.16515 + 8.75560i −0.257546 + 0.314714i
\(775\) 45.8258 + 26.4575i 1.64611 + 0.950382i
\(776\) 17.5000 + 9.26013i 0.628213 + 0.332419i
\(777\) −54.9909 + 10.5830i −1.97279 + 0.379663i
\(778\) −9.00000 23.8118i −0.322666 0.853693i
\(779\) 0 0
\(780\) 0 0
\(781\) −2.16515 + 17.4159i −0.0774752 + 0.623188i
\(782\) −39.0780 6.39590i −1.39743 0.228717i
\(783\) 21.0000 0.750479
\(784\) −26.9955 7.43273i −0.964123 0.265455i
\(785\) 0 0
\(786\) −8.46099 + 51.6954i −0.301793 + 1.84391i
\(787\) −7.00000 12.1244i −0.249523 0.432187i 0.713871 0.700278i \(-0.246941\pi\)
−0.963394 + 0.268091i \(0.913607\pi\)
\(788\) 5.06080 15.0462i 0.180283 0.535999i
\(789\) 25.2042 + 14.5516i 0.897292 + 0.518052i
\(790\) 0 0
\(791\) −9.50000 49.3634i −0.337781 1.75516i
\(792\) −34.0000 + 15.8745i −1.20814 + 0.564076i
\(793\) −3.50000 + 6.06218i −0.124289 + 0.215274i
\(794\) −25.0780 + 30.6446i −0.889986 + 1.08754i
\(795\) 0 0
\(796\) −20.7477 + 4.18710i −0.735384 + 0.148408i
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −8.02178 + 27.1229i −0.283613 + 0.958939i
\(801\) −28.0000 48.4974i −0.989331 1.71357i
\(802\) 24.1824 29.5502i 0.853910 1.04345i
\(803\) −32.3303 + 13.6657i −1.14091 + 0.482252i
\(804\) −10.5000 + 9.26013i −0.370306 + 0.326580i
\(805\) 0 0
\(806\) 14.0000 + 37.0405i 0.493129 + 1.30470i
\(807\) 64.1561 + 37.0405i 2.25840 + 1.30389i
\(808\) −22.4347 + 0.828301i −0.789249 + 0.0291395i
\(809\) −27.4955 + 15.8745i −0.966689 + 0.558118i −0.898225 0.439536i \(-0.855143\pi\)
−0.0684635 + 0.997654i \(0.521810\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 41.6216 + 5.62523i 1.46063 + 0.197407i
\(813\) 18.5203i 0.649534i
\(814\) −27.1652 + 25.8854i −0.952138 + 0.907283i
\(815\) 0 0
\(816\) 51.6170 21.7182i 1.80696 0.760289i
\(817\) 0 0
\(818\) −49.0000 + 18.5203i −1.71324 + 0.647546i
\(819\) −9.16515 + 26.4575i −0.320256 + 0.924500i
\(820\) 0 0
\(821\) 29.7867 + 17.1974i 1.03956 + 0.600193i 0.919710 0.392599i \(-0.128424\pi\)
0.119855 + 0.992791i \(0.461757\pi\)
\(822\) 8.68693 + 7.10895i 0.302992 + 0.247953i
\(823\) 9.16515 5.29150i 0.319477 0.184450i −0.331682 0.943391i \(-0.607616\pi\)
0.651159 + 0.758941i \(0.274283\pi\)
\(824\) −7.95644 12.6766i −0.277176 0.441609i
\(825\) 35.0000 + 26.4575i 1.21854 + 0.921132i
\(826\) 5.18693 + 8.43183i 0.180476 + 0.293381i
\(827\) 26.0000 0.904109 0.452054 0.891990i \(-0.350691\pi\)
0.452054 + 0.891990i \(0.350691\pi\)
\(828\) 41.4955 8.37420i 1.44207 0.291024i
\(829\) −21.0000 36.3731i −0.729360 1.26329i −0.957154 0.289579i \(-0.906485\pi\)
0.227794 0.973709i \(-0.426849\pi\)
\(830\) 0 0
\(831\) −17.5000 + 30.3109i −0.607068 + 1.05147i
\(832\) −17.5000 + 11.9059i −0.606703 + 0.412762i
\(833\) 22.9129 29.1033i 0.793884 1.00837i
\(834\) 49.0000 18.5203i 1.69673 0.641304i
\(835\) 0 0
\(836\) 0 0
\(837\) 14.0000 + 24.2487i 0.483911 + 0.838158i
\(838\) −1.20871 + 7.38505i −0.0417543 + 0.255112i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −34.0000 −1.17241
\(842\) 16.7477 + 2.74110i 0.577165 + 0.0944646i
\(843\) −21.0000 36.3731i −0.723278 1.25275i
\(844\) 3.79129 + 1.27520i 0.130502 + 0.0438942i
\(845\) 0 0
\(846\) 0 0
\(847\) −1.66515 + 29.0556i −0.0572153 + 0.998362i
\(848\) −2.00000 + 15.8745i −0.0686803 + 0.545133i
\(849\) −64.1561 37.0405i −2.20183 1.27123i
\(850\) −28.9564 23.6965i −0.993198 0.812784i
\(851\) 36.6606 21.1660i 1.25671 0.725561i
\(852\) 5.53901 + 27.4467i 0.189764 + 0.940307i
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) −4.70871 + 8.70793i −0.161129 + 0.297979i
\(855\) 0 0
\(856\) −19.1652 + 12.0290i −0.655051 + 0.411143i
\(857\) 18.3303 10.5830i 0.626151 0.361509i −0.153109 0.988209i \(-0.548928\pi\)
0.779260 + 0.626701i \(0.215595\pi\)
\(858\) 7.73049 + 31.9099i 0.263915 + 1.08938i
\(859\) 16.0390 + 9.26013i 0.547244 + 0.315952i 0.748010 0.663688i \(-0.231010\pi\)
−0.200766 + 0.979639i \(0.564343\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.50000 3.96863i −0.0510902 0.135172i
\(863\) −13.7477 7.93725i −0.467978 0.270187i 0.247415 0.968910i \(-0.420419\pi\)
−0.715393 + 0.698722i \(0.753752\pi\)
\(864\) −10.8521 + 10.3069i −0.369195 + 0.350648i
\(865\) 0 0
\(866\) −19.5390 3.19795i −0.663963 0.108671i
\(867\) 29.1033i 0.988399i
\(868\) 21.2523 + 51.8106i 0.721349 + 1.75857i
\(869\) 26.0000 34.3948i 0.881990 1.16676i
\(870\) 0 0
\(871\) 3.50000 + 6.06218i 0.118593 + 0.205409i
\(872\) −29.9129 + 1.10440i −1.01298 + 0.0373997i
\(873\) 14.0000 24.2487i 0.473828 0.820695i
\(874\) 0 0
\(875\) 0 0
\(876\) −42.0000 + 37.0405i −1.41905 + 1.25148i
\(877\) −11.4564 6.61438i −0.386856 0.223352i 0.293941 0.955824i \(-0.405033\pi\)
−0.680797 + 0.732472i \(0.738367\pi\)
\(878\) 31.3475 38.3058i 1.05793 1.29276i
\(879\) −28.0000 48.4974i −0.944417 1.63578i
\(880\) 0 0
\(881\) 7.00000 0.235836 0.117918 0.993023i \(-0.462378\pi\)
0.117918 + 0.993023i \(0.462378\pi\)
\(882\) −11.9129 + 37.7635i −0.401127 + 1.27156i
\(883\) 34.3948i 1.15748i −0.815514 0.578738i \(-0.803545\pi\)
0.815514 0.578738i \(-0.196455\pi\)
\(884\) −5.53901 27.4467i −0.186297 0.923131i
\(885\) 0 0
\(886\) 40.5390 + 33.1751i 1.36193 + 1.11454i
\(887\) −24.5000 + 42.4352i −0.822629 + 1.42484i 0.0810881 + 0.996707i \(0.474160\pi\)
−0.903718 + 0.428129i \(0.859173\pi\)
\(888\) −28.0000 + 52.9150i −0.939618 + 1.77571i
\(889\) −2.50000 12.9904i −0.0838473 0.435683i
\(890\) 0 0
\(891\) −6.45644 15.2746i −0.216299 0.511719i
\(892\) −10.1216 + 30.0924i −0.338896 + 1.00757i
\(893\) 0 0
\(894\) −39.0780 6.39590i −1.30696 0.213911i
\(895\) 0 0
\(896\) −24.2695 + 17.5212i −0.810787 + 0.585341i
\(897\) 37.0405i 1.23675i
\(898\) −41.8693 6.85275i −1.39720 0.228679i
\(899\) −42.0000 72.7461i −1.40078 2.42622i
\(900\) 37.9129 + 12.7520i 1.26376 + 0.425067i
\(901\) −18.3303 10.5830i −0.610671 0.352571i
\(902\) 0 0
\(903\) 9.16515 + 10.5830i 0.304997 + 0.352180i
\(904\) −47.5000 25.1346i −1.57983 0.835966i
\(905\) 0 0
\(906\) 49.2259 + 40.2841i 1.63542 + 1.33835i
\(907\) 4.58258 2.64575i 0.152162 0.0878507i −0.421986 0.906602i \(-0.638667\pi\)
0.574148 + 0.818752i \(0.305333\pi\)
\(908\) −5.53901 27.4467i −0.183819 0.910850i
\(909\) 31.7490i 1.05305i
\(910\) 0 0
\(911\) 15.8745i 0.525946i −0.964803 0.262973i \(-0.915297\pi\)
0.964803 0.262973i \(-0.0847030\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −5.79129 4.73930i −0.191559 0.156762i
\(915\) 0 0
\(916\) −21.0000 + 18.5203i −0.693860 + 0.611927i
\(917\) 35.0000 + 12.1244i 1.15580 + 0.400381i
\(918\) −7.00000 18.5203i −0.231034 0.611260i
\(919\) −4.00000 + 6.92820i −0.131948 + 0.228540i −0.924427 0.381358i \(-0.875456\pi\)
0.792480 + 0.609898i \(0.208790\pi\)
\(920\) 0 0
\(921\) −64.1561 + 37.0405i −2.11401 + 1.22053i
\(922\) −1.81307 + 11.0776i −0.0597102 + 0.364821i
\(923\) 14.0000 0.460816
\(924\) 12.1869 + 44.8049i 0.400921 + 1.47397i
\(925\) 40.0000 1.31519
\(926\) 4.83485 29.5402i 0.158883 0.970752i
\(927\) −18.3303 + 10.5830i −0.602046 + 0.347591i
\(928\) 32.5562 30.9207i 1.06871 1.01502i
\(929\) −17.5000 + 30.3109i −0.574156 + 0.994468i 0.421976 + 0.906607i \(0.361337\pi\)
−0.996133 + 0.0878612i \(0.971997\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −21.0000 23.8118i −0.687878 0.779980i
\(933\) 14.0000 24.2487i 0.458339 0.793867i
\(934\) −17.3739 14.2179i −0.568490 0.465224i
\(935\) 0 0
\(936\) 15.9129 + 25.3531i 0.520129 + 0.828692i
\(937\) 26.4575i 0.864329i −0.901795 0.432165i \(-0.857750\pi\)
0.901795 0.432165i \(-0.142250\pi\)
\(938\) 5.18693 + 8.43183i 0.169359 + 0.275309i
\(939\) 55.5608i 1.81316i
\(940\) 0 0
\(941\) 48.1170 27.7804i 1.56857 0.905615i 0.572235 0.820090i \(-0.306077\pi\)
0.996336 0.0855250i \(-0.0272567\pi\)
\(942\) −40.5390 33.1751i −1.32083 1.08090i
\(943\) 0 0
\(944\) 10.5000 + 1.32288i 0.341746 + 0.0430559i
\(945\) 0 0
\(946\) 9.00000 + 2.64575i 0.292615 + 0.0860208i
\(947\) 13.7477 + 7.93725i 0.446741 + 0.257926i 0.706453 0.707760i \(-0.250294\pi\)
−0.259712 + 0.965686i \(0.583628\pi\)
\(948\) 21.9301 65.2002i 0.712257 2.11761i
\(949\) 14.0000 + 24.2487i 0.454459 + 0.787146i
\(950\) 0 0
\(951\) 15.8745i 0.514766i
\(952\) −8.91288 38.5819i −0.288868 1.25045i
\(953\) 15.8745i 0.514226i 0.966381 + 0.257113i \(0.0827712\pi\)
−0.966381 + 0.257113i \(0.917229\pi\)
\(954\) 22.3303 + 3.65480i 0.722970 + 0.118329i
\(955\) 0 0
\(956\) −36.0172 12.1144i −1.16488 0.391808i
\(957\) −27.1170 64.1535i −0.876570 2.07379i
\(958\) −10.5000 27.7804i −0.339240 0.897544i
\(959\) 6.00000 5.19615i 0.193750 0.167793i
\(960\) 0 0
\(961\) 40.5000 70.1481i 1.30645 2.26284i
\(962\) 23.1652 + 18.9572i 0.746874 + 0.611205i
\(963\) 16.0000 + 27.7128i 0.515593 + 0.893033i
\(964\) −10.3739 + 2.09355i −0.334120 + 0.0674287i
\(965\) 0 0
\(966\) −1.46099 52.3628i −0.0470064 1.68475i
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) 23.0998 + 20.8422i 0.742456 + 0.669895i
\(969\) 0 0
\(970\) 0 0
\(971\) −25.2042 14.5516i −0.808840 0.466984i 0.0377128 0.999289i \(-0.487993\pi\)
−0.846553 + 0.532305i \(0.821326\pi\)
\(972\) −28.0000 31.7490i −0.898100 1.01835i
\(973\) −7.00000 36.3731i −0.224410 1.16607i
\(974\) 0 0
\(975\) 17.5000 30.3109i 0.560449 0.970725i
\(976\) 4.10436 + 9.75470i 0.131377 + 0.312240i
\(977\) 19.0000 + 32.9090i 0.607864 + 1.05285i 0.991592 + 0.129405i \(0.0413067\pi\)
−0.383728 + 0.923446i \(0.625360\pi\)
\(978\) 9.76951 + 1.59898i 0.312394 + 0.0511296i
\(979\) −28.0000 + 37.0405i −0.894884 + 1.18382i
\(980\) 0 0
\(981\) 42.3320i 1.35156i
\(982\) 36.2867 + 5.93905i 1.15796 + 0.189523i
\(983\) −41.2432 + 23.8118i −1.31545 + 0.759477i −0.982994 0.183640i \(-0.941212\pi\)
−0.332460 + 0.943117i \(0.607879\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 21.0000 + 55.5608i 0.668776 + 1.76942i
\(987\) 0 0
\(988\) 0 0
\(989\) −9.16515 5.29150i −0.291435 0.168260i
\(990\) 0 0
\(991\) 18.3303 10.5830i 0.582281 0.336180i −0.179758 0.983711i \(-0.557532\pi\)
0.762039 + 0.647531i \(0.224198\pi\)
\(992\) 57.4083 + 16.9789i 1.82272 + 0.539081i
\(993\) −63.0000 −1.99924
\(994\) 19.7913 0.552200i 0.627742 0.0175147i
\(995\) 0 0
\(996\) 0 0
\(997\) −45.8258 + 26.4575i −1.45132 + 0.837918i −0.998556 0.0537146i \(-0.982894\pi\)
−0.452760 + 0.891632i \(0.649561\pi\)
\(998\) −28.9564 23.6965i −0.916600 0.750100i
\(999\) 18.3303 + 10.5830i 0.579945 + 0.334831i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.n.b.219.2 yes 4
4.3 odd 2 308.2.n.a.219.2 yes 4
7.4 even 3 inner 308.2.n.b.263.1 yes 4
11.10 odd 2 308.2.n.a.219.1 4
28.11 odd 6 308.2.n.a.263.1 yes 4
44.43 even 2 inner 308.2.n.b.219.1 yes 4
77.32 odd 6 308.2.n.a.263.2 yes 4
308.263 even 6 inner 308.2.n.b.263.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.n.a.219.1 4 11.10 odd 2
308.2.n.a.219.2 yes 4 4.3 odd 2
308.2.n.a.263.1 yes 4 28.11 odd 6
308.2.n.a.263.2 yes 4 77.32 odd 6
308.2.n.b.219.1 yes 4 44.43 even 2 inner
308.2.n.b.219.2 yes 4 1.1 even 1 trivial
308.2.n.b.263.1 yes 4 7.4 even 3 inner
308.2.n.b.263.2 yes 4 308.263 even 6 inner