Properties

Label 308.2.n.b
Level $308$
Weight $2$
Character orbit 308.n
Analytic conductor $2.459$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(219,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.219");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + ( - \beta_{2} - 2 \beta_1 + 1) q^{3} + ( - \beta_{2} + \beta_1 + 1) q^{4} + (\beta_{3} - \beta_{2} - \beta_1 - 3) q^{6} + ( - 3 \beta_{2} + 2) q^{7} + (\beta_{3} - \beta_{2} - \beta_1 + 3) q^{8}+ \cdots + (8 \beta_{3} - 8 \beta_{2} - 8 \beta_1 - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 3 q^{4} - 14 q^{6} + 2 q^{7} + 10 q^{8} + 8 q^{9} - 4 q^{11} - 7 q^{12} + 5 q^{14} - q^{16} - 4 q^{18} - 18 q^{22} - 7 q^{24} + 10 q^{25} - 7 q^{26} - 12 q^{28} + 11 q^{32} + 14 q^{33} - 28 q^{34}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - x^{2} - 2x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + \nu^{2} - \nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + \nu^{2} + \nu + 2 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(-\beta_{2}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
219.1
−0.895644 + 1.09445i
1.39564 0.228425i
−0.895644 1.09445i
1.39564 + 0.228425i
−0.895644 1.09445i 2.29129 1.32288i −0.395644 + 1.96048i 0 −3.50000 1.32288i 0.500000 + 2.59808i 2.50000 1.32288i 2.00000 3.46410i 0
219.2 1.39564 + 0.228425i −2.29129 + 1.32288i 1.89564 + 0.637600i 0 −3.50000 + 1.32288i 0.500000 + 2.59808i 2.50000 + 1.32288i 2.00000 3.46410i 0
263.1 −0.895644 + 1.09445i 2.29129 + 1.32288i −0.395644 1.96048i 0 −3.50000 + 1.32288i 0.500000 2.59808i 2.50000 + 1.32288i 2.00000 + 3.46410i 0
263.2 1.39564 0.228425i −2.29129 1.32288i 1.89564 0.637600i 0 −3.50000 1.32288i 0.500000 2.59808i 2.50000 1.32288i 2.00000 + 3.46410i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
44.c even 2 1 inner
308.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 308.2.n.b yes 4
4.b odd 2 1 308.2.n.a 4
7.c even 3 1 inner 308.2.n.b yes 4
11.b odd 2 1 308.2.n.a 4
28.g odd 6 1 308.2.n.a 4
44.c even 2 1 inner 308.2.n.b yes 4
77.h odd 6 1 308.2.n.a 4
308.n even 6 1 inner 308.2.n.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.2.n.a 4 4.b odd 2 1
308.2.n.a 4 11.b odd 2 1
308.2.n.a 4 28.g odd 6 1
308.2.n.a 4 77.h odd 6 1
308.2.n.b yes 4 1.a even 1 1 trivial
308.2.n.b yes 4 7.c even 3 1 inner
308.2.n.b yes 4 44.c even 2 1 inner
308.2.n.b yes 4 308.n even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(308, [\chi])\):

\( T_{3}^{4} - 7T_{3}^{2} + 49 \) Copy content Toggle raw display
\( T_{43} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} - T^{2} + \cdots + 4 \) Copy content Toggle raw display
$3$ \( T^{4} - 7T^{2} + 49 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$13$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 28T^{2} + 784 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 28T^{2} + 784 \) Copy content Toggle raw display
$29$ \( (T^{2} + 63)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 112 T^{2} + 12544 \) Copy content Toggle raw display
$37$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T + 2)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 7T^{2} + 49 \) Copy content Toggle raw display
$61$ \( T^{4} - 7T^{2} + 49 \) Copy content Toggle raw display
$67$ \( T^{4} - 7T^{2} + 49 \) Copy content Toggle raw display
$71$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 112 T^{2} + 12544 \) Copy content Toggle raw display
$79$ \( (T^{2} + 13 T + 169)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 14 T + 196)^{2} \) Copy content Toggle raw display
$97$ \( (T - 7)^{4} \) Copy content Toggle raw display
show more
show less