L(s) = 1 | + (1.39 − 0.228i)2-s + (−2.29 − 1.32i)3-s + (1.89 − 0.637i)4-s + (−3.5 − 1.32i)6-s + (0.5 − 2.59i)7-s + (2.49 − 1.32i)8-s + (2 + 3.46i)9-s + (−3.29 + 0.409i)11-s + (−5.18 − 1.04i)12-s − 2.64i·13-s + (0.104 − 3.74i)14-s + (3.18 − 2.41i)16-s + (−4.58 − 2.64i)17-s + (3.58 + 4.37i)18-s + (−4.58 + 5.29i)21-s + (−4.5 + 1.32i)22-s + ⋯ |
L(s) = 1 | + (0.986 − 0.161i)2-s + (−1.32 − 0.763i)3-s + (0.947 − 0.318i)4-s + (−1.42 − 0.540i)6-s + (0.188 − 0.981i)7-s + (0.883 − 0.467i)8-s + (0.666 + 1.15i)9-s + (−0.992 + 0.123i)11-s + (−1.49 − 0.302i)12-s − 0.733i·13-s + (0.0278 − 0.999i)14-s + (0.796 − 0.604i)16-s + (−1.11 − 0.641i)17-s + (0.844 + 1.03i)18-s + (−0.999 + 1.15i)21-s + (−0.959 + 0.282i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.323 + 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.323 + 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.855331 - 1.19575i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.855331 - 1.19575i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.39 + 0.228i)T \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
| 11 | \( 1 + (3.29 - 0.409i)T \) |
good | 3 | \( 1 + (2.29 + 1.32i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 + 2.64iT - 13T^{2} \) |
| 17 | \( 1 + (4.58 + 2.64i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.58 + 2.64i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 7.93iT - 29T^{2} \) |
| 31 | \( 1 + (-9.16 - 5.29i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4 - 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 2T + 43T^{2} \) |
| 47 | \( 1 + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.29 - 1.32i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.29 + 1.32i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.29 - 1.32i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 5.29iT - 71T^{2} \) |
| 73 | \( 1 + (-9.16 - 5.29i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.5 + 11.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-7 - 12.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49624961309410699653524466650, −10.73767802608456938253703344607, −10.27698096812690365003583424580, −8.149163589166907966429394652271, −6.95883042136788658418464297997, −6.60143210499936082991329110987, −5.19063206548006622893456863828, −4.68596983327481833361181970022, −2.82184770882660956985849675235, −0.952084653986474754354346535006,
2.46110618836448759652781465770, 4.17924269116382637531296746780, 5.02621224051142506477212896199, 5.80909824950624064826701147276, 6.58875258456860559200844622730, 8.003166608613677448862360387990, 9.351299076186921942606459168651, 10.56368031646566724887172228355, 11.31944622142821509622600068676, 11.74909369496926883556991457824