L(s) = 1 | + (1.39 − 0.228i)2-s + (−2.29 − 1.32i)3-s + (1.89 − 0.637i)4-s + (−3.5 − 1.32i)6-s + (0.5 − 2.59i)7-s + (2.49 − 1.32i)8-s + (2 + 3.46i)9-s + (−3.29 + 0.409i)11-s + (−5.18 − 1.04i)12-s − 2.64i·13-s + (0.104 − 3.74i)14-s + (3.18 − 2.41i)16-s + (−4.58 − 2.64i)17-s + (3.58 + 4.37i)18-s + (−4.58 + 5.29i)21-s + (−4.5 + 1.32i)22-s + ⋯ |
L(s) = 1 | + (0.986 − 0.161i)2-s + (−1.32 − 0.763i)3-s + (0.947 − 0.318i)4-s + (−1.42 − 0.540i)6-s + (0.188 − 0.981i)7-s + (0.883 − 0.467i)8-s + (0.666 + 1.15i)9-s + (−0.992 + 0.123i)11-s + (−1.49 − 0.302i)12-s − 0.733i·13-s + (0.0278 − 0.999i)14-s + (0.796 − 0.604i)16-s + (−1.11 − 0.641i)17-s + (0.844 + 1.03i)18-s + (−0.999 + 1.15i)21-s + (−0.959 + 0.282i)22-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(−0.323+0.946i)Λ(2−s)
Λ(s)=(=(308s/2ΓC(s+1/2)L(s)(−0.323+0.946i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
−0.323+0.946i
|
Analytic conductor: |
2.45939 |
Root analytic conductor: |
1.56824 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(263,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1/2), −0.323+0.946i)
|
Particular Values
L(1) |
≈ |
0.855331−1.19575i |
L(21) |
≈ |
0.855331−1.19575i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39+0.228i)T |
| 7 | 1+(−0.5+2.59i)T |
| 11 | 1+(3.29−0.409i)T |
good | 3 | 1+(2.29+1.32i)T+(1.5+2.59i)T2 |
| 5 | 1+(−2.5+4.33i)T2 |
| 13 | 1+2.64iT−13T2 |
| 17 | 1+(4.58+2.64i)T+(8.5+14.7i)T2 |
| 19 | 1+(−9.5+16.4i)T2 |
| 23 | 1+(−4.58+2.64i)T+(11.5−19.9i)T2 |
| 29 | 1−7.93iT−29T2 |
| 31 | 1+(−9.16−5.29i)T+(15.5+26.8i)T2 |
| 37 | 1+(−4−6.92i)T+(−18.5+32.0i)T2 |
| 41 | 1−41T2 |
| 43 | 1+2T+43T2 |
| 47 | 1+(23.5−40.7i)T2 |
| 53 | 1+(−2+3.46i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−2.29−1.32i)T+(29.5+51.0i)T2 |
| 61 | 1+(−2.29+1.32i)T+(30.5−52.8i)T2 |
| 67 | 1+(−2.29−1.32i)T+(33.5+58.0i)T2 |
| 71 | 1−5.29iT−71T2 |
| 73 | 1+(−9.16−5.29i)T+(36.5+63.2i)T2 |
| 79 | 1+(6.5+11.2i)T+(−39.5+68.4i)T2 |
| 83 | 1+83T2 |
| 89 | 1+(−7−12.1i)T+(−44.5+77.0i)T2 |
| 97 | 1−7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49624961309410699653524466650, −10.73767802608456938253703344607, −10.27698096812690365003583424580, −8.149163589166907966429394652271, −6.95883042136788658418464297997, −6.60143210499936082991329110987, −5.19063206548006622893456863828, −4.68596983327481833361181970022, −2.82184770882660956985849675235, −0.952084653986474754354346535006,
2.46110618836448759652781465770, 4.17924269116382637531296746780, 5.02621224051142506477212896199, 5.80909824950624064826701147276, 6.58875258456860559200844622730, 8.003166608613677448862360387990, 9.351299076186921942606459168651, 10.56368031646566724887172228355, 11.31944622142821509622600068676, 11.74909369496926883556991457824