Properties

Label 2-308-308.195-c2-0-33
Degree $2$
Conductor $308$
Sign $-0.218 - 0.975i$
Analytic cond. $8.39239$
Root an. cond. $2.89696$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.72 + 1.01i)2-s + (1.92 + 3.50i)4-s + (−2.16 + 6.65i)7-s + (−0.247 + 7.99i)8-s + (7.28 − 5.29i)9-s + (−3.79 + 10.3i)11-s + (−10.5 + 9.26i)14-s + (−8.56 + 13.5i)16-s + (17.9 − 1.69i)18-s + (−17.0 + 13.9i)22-s + 4.03i·23-s + (7.72 + 23.7i)25-s + (−27.5 + 5.25i)28-s + (13.9 + 4.51i)29-s + (−28.5 + 14.5i)32-s + ⋯
L(s)  = 1  + (0.860 + 0.508i)2-s + (0.482 + 0.876i)4-s + (−0.309 + 0.951i)7-s + (−0.0309 + 0.999i)8-s + (0.809 − 0.587i)9-s + (−0.344 + 0.938i)11-s + (−0.750 + 0.661i)14-s + (−0.535 + 0.844i)16-s + (0.995 − 0.0942i)18-s + (−0.774 + 0.632i)22-s + 0.175i·23-s + (0.309 + 0.951i)25-s + (−0.982 + 0.187i)28-s + (0.479 + 0.155i)29-s + (−0.890 + 0.454i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.218 - 0.975i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 308 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.218 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(308\)    =    \(2^{2} \cdot 7 \cdot 11\)
Sign: $-0.218 - 0.975i$
Analytic conductor: \(8.39239\)
Root analytic conductor: \(2.89696\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{308} (195, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 308,\ (\ :1),\ -0.218 - 0.975i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.61081 + 2.01170i\)
\(L(\frac12)\) \(\approx\) \(1.61081 + 2.01170i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.72 - 1.01i)T \)
7 \( 1 + (2.16 - 6.65i)T \)
11 \( 1 + (3.79 - 10.3i)T \)
good3 \( 1 + (-7.28 + 5.29i)T^{2} \)
5 \( 1 + (-7.72 - 23.7i)T^{2} \)
13 \( 1 + (52.2 - 160. i)T^{2} \)
17 \( 1 + (89.3 + 274. i)T^{2} \)
19 \( 1 + (292. - 212. i)T^{2} \)
23 \( 1 - 4.03iT - 529T^{2} \)
29 \( 1 + (-13.9 - 4.51i)T + (680. + 494. i)T^{2} \)
31 \( 1 + (296. - 913. i)T^{2} \)
37 \( 1 + (-22.2 + 68.6i)T + (-1.10e3 - 804. i)T^{2} \)
41 \( 1 + (-1.35e3 + 988. i)T^{2} \)
43 \( 1 - 9.59T + 1.84e3T^{2} \)
47 \( 1 + (-1.78e3 + 1.29e3i)T^{2} \)
53 \( 1 + (-54.2 + 39.4i)T + (868. - 2.67e3i)T^{2} \)
59 \( 1 + (-2.81e3 - 2.04e3i)T^{2} \)
61 \( 1 + (1.14e3 + 3.53e3i)T^{2} \)
67 \( 1 + 17.9iT - 4.48e3T^{2} \)
71 \( 1 + (-79.6 + 109. i)T + (-1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-4.31e3 - 3.13e3i)T^{2} \)
79 \( 1 + (-1.13 + 0.823i)T + (1.92e3 - 5.93e3i)T^{2} \)
83 \( 1 + (-2.12e3 - 6.55e3i)T^{2} \)
89 \( 1 - 7.92e3T^{2} \)
97 \( 1 + (-2.90e3 + 8.94e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.18420055197837156057082821914, −11.04518002947137632267974206172, −9.753091485429978623287832863767, −8.871585311217378268224584676442, −7.59752578190093283129160058345, −6.80858462379032023695867926737, −5.75576683783093954822408554424, −4.74918458439529716216669103494, −3.55265313850399882143580943897, −2.18255204209033464938752976686, 1.00229200656210399053777468339, 2.72509536766783651161816015215, 3.98473790559794955034361093654, 4.88357602304156357927704856669, 6.18759787419397384278873016440, 7.09586502970071414671152088925, 8.252921057642354797701397236849, 9.821185728476640948568509013155, 10.43170945348004314564972838119, 11.15907508870110536347323217068

Graph of the $Z$-function along the critical line