L(s) = 1 | + (1.72 + 1.01i)2-s + (1.92 + 3.50i)4-s + (−2.16 + 6.65i)7-s + (−0.247 + 7.99i)8-s + (7.28 − 5.29i)9-s + (−3.79 + 10.3i)11-s + (−10.5 + 9.26i)14-s + (−8.56 + 13.5i)16-s + (17.9 − 1.69i)18-s + (−17.0 + 13.9i)22-s + 4.03i·23-s + (7.72 + 23.7i)25-s + (−27.5 + 5.25i)28-s + (13.9 + 4.51i)29-s + (−28.5 + 14.5i)32-s + ⋯ |
L(s) = 1 | + (0.860 + 0.508i)2-s + (0.482 + 0.876i)4-s + (−0.309 + 0.951i)7-s + (−0.0309 + 0.999i)8-s + (0.809 − 0.587i)9-s + (−0.344 + 0.938i)11-s + (−0.750 + 0.661i)14-s + (−0.535 + 0.844i)16-s + (0.995 − 0.0942i)18-s + (−0.774 + 0.632i)22-s + 0.175i·23-s + (0.309 + 0.951i)25-s + (−0.982 + 0.187i)28-s + (0.479 + 0.155i)29-s + (−0.890 + 0.454i)32-s + ⋯ |
Λ(s)=(=(308s/2ΓC(s)L(s)(−0.218−0.975i)Λ(3−s)
Λ(s)=(=(308s/2ΓC(s+1)L(s)(−0.218−0.975i)Λ(1−s)
Degree: |
2 |
Conductor: |
308
= 22⋅7⋅11
|
Sign: |
−0.218−0.975i
|
Analytic conductor: |
8.39239 |
Root analytic conductor: |
2.89696 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ308(195,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 308, ( :1), −0.218−0.975i)
|
Particular Values
L(23) |
≈ |
1.61081+2.01170i |
L(21) |
≈ |
1.61081+2.01170i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.72−1.01i)T |
| 7 | 1+(2.16−6.65i)T |
| 11 | 1+(3.79−10.3i)T |
good | 3 | 1+(−7.28+5.29i)T2 |
| 5 | 1+(−7.72−23.7i)T2 |
| 13 | 1+(52.2−160.i)T2 |
| 17 | 1+(89.3+274.i)T2 |
| 19 | 1+(292.−212.i)T2 |
| 23 | 1−4.03iT−529T2 |
| 29 | 1+(−13.9−4.51i)T+(680.+494.i)T2 |
| 31 | 1+(296.−913.i)T2 |
| 37 | 1+(−22.2+68.6i)T+(−1.10e3−804.i)T2 |
| 41 | 1+(−1.35e3+988.i)T2 |
| 43 | 1−9.59T+1.84e3T2 |
| 47 | 1+(−1.78e3+1.29e3i)T2 |
| 53 | 1+(−54.2+39.4i)T+(868.−2.67e3i)T2 |
| 59 | 1+(−2.81e3−2.04e3i)T2 |
| 61 | 1+(1.14e3+3.53e3i)T2 |
| 67 | 1+17.9iT−4.48e3T2 |
| 71 | 1+(−79.6+109.i)T+(−1.55e3−4.79e3i)T2 |
| 73 | 1+(−4.31e3−3.13e3i)T2 |
| 79 | 1+(−1.13+0.823i)T+(1.92e3−5.93e3i)T2 |
| 83 | 1+(−2.12e3−6.55e3i)T2 |
| 89 | 1−7.92e3T2 |
| 97 | 1+(−2.90e3+8.94e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.18420055197837156057082821914, −11.04518002947137632267974206172, −9.753091485429978623287832863767, −8.871585311217378268224584676442, −7.59752578190093283129160058345, −6.80858462379032023695867926737, −5.75576683783093954822408554424, −4.74918458439529716216669103494, −3.55265313850399882143580943897, −2.18255204209033464938752976686,
1.00229200656210399053777468339, 2.72509536766783651161816015215, 3.98473790559794955034361093654, 4.88357602304156357927704856669, 6.18759787419397384278873016440, 7.09586502970071414671152088925, 8.252921057642354797701397236849, 9.821185728476640948568509013155, 10.43170945348004314564972838119, 11.15907508870110536347323217068