Properties

Label 308.3.s.a
Level $308$
Weight $3$
Character orbit 308.s
Analytic conductor $8.392$
Analytic rank $0$
Dimension $8$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,3,Mod(83,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.83");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 308.s (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.39239214230\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.37515625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - x^{6} + 3x^{5} - x^{4} + 6x^{3} - 4x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} - \beta_{4}) q^{2} + (\beta_{7} + 3 \beta_{2}) q^{4} - 7 \beta_{3} q^{7} + ( - 2 \beta_{7} + 2 \beta_{5} + \cdots + 2) q^{8} + 9 \beta_{7} q^{9} + (\beta_{7} - \beta_{5} - \beta_{3} + \cdots - 1) q^{11}+ \cdots + ( - 72 \beta_{6} + 63) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{2} - q^{4} + 14 q^{7} + 9 q^{8} + 18 q^{9} + 6 q^{11} - 84 q^{14} + 31 q^{16} + 27 q^{18} + 37 q^{22} - 50 q^{25} + 7 q^{28} - 228 q^{32} + 9 q^{36} + 114 q^{37} + 116 q^{43} - 348 q^{44} - 303 q^{46}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - x^{6} + 3x^{5} - x^{4} + 6x^{3} - 4x^{2} - 8x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} - \nu^{6} - \nu^{5} + 3\nu^{4} - \nu^{3} + 6\nu^{2} - 4\nu - 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{7} - \nu^{6} + 3\nu^{5} - \nu^{4} + 3\nu^{3} - 4\nu^{2} - 8\nu + 16 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - 3\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} - 7\nu^{2} ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{5} - 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -3\nu^{7} + 3\nu^{6} + 3\nu^{5} - \nu^{4} + 3\nu^{3} - 18\nu^{2} + 12\nu + 24 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} + 2\beta_{3} + \beta_{2} + \beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{6} - 5 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{7} - 2\beta_{5} - 2\beta_{3} - 5\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 3\beta_{5} - 7\beta_{4} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(-1\) \(-\beta_{3}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
83.1
−1.41264 + 0.0667372i
1.10362 + 0.884319i
1.18208 + 0.776336i
−0.373058 1.36412i
−1.41264 0.0667372i
1.10362 0.884319i
1.18208 0.776336i
−0.373058 + 1.36412i
−1.99109 + 0.188551i 0 3.92890 0.750845i 0 0 5.66312 4.11450i −7.68122 + 2.23580i −2.78115 8.55951i 0
83.2 −0.435959 1.95191i 0 −3.61988 + 1.70190i 0 0 5.66312 4.11450i 4.90007 + 6.32371i −2.78115 8.55951i 0
139.1 −0.794604 1.83538i 0 −2.73721 + 2.91679i 0 0 −2.16312 6.65740i 7.52841 + 2.70611i 7.28115 + 5.29007i 0
139.2 1.72166 1.01779i 0 1.92819 3.50458i 0 0 −2.16312 6.65740i −0.247258 7.99618i 7.28115 + 5.29007i 0
167.1 −1.99109 0.188551i 0 3.92890 + 0.750845i 0 0 5.66312 + 4.11450i −7.68122 2.23580i −2.78115 + 8.55951i 0
167.2 −0.435959 + 1.95191i 0 −3.61988 1.70190i 0 0 5.66312 + 4.11450i 4.90007 6.32371i −2.78115 + 8.55951i 0
195.1 −0.794604 + 1.83538i 0 −2.73721 2.91679i 0 0 −2.16312 + 6.65740i 7.52841 2.70611i 7.28115 5.29007i 0
195.2 1.72166 + 1.01779i 0 1.92819 + 3.50458i 0 0 −2.16312 + 6.65740i −0.247258 + 7.99618i 7.28115 5.29007i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 83.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
44.g even 10 1 inner
308.s odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 308.3.s.a 8
4.b odd 2 1 308.3.s.b yes 8
7.b odd 2 1 CM 308.3.s.a 8
11.d odd 10 1 308.3.s.b yes 8
28.d even 2 1 308.3.s.b yes 8
44.g even 10 1 inner 308.3.s.a 8
77.l even 10 1 308.3.s.b yes 8
308.s odd 10 1 inner 308.3.s.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.3.s.a 8 1.a even 1 1 trivial
308.3.s.a 8 7.b odd 2 1 CM
308.3.s.a 8 44.g even 10 1 inner
308.3.s.a 8 308.s odd 10 1 inner
308.3.s.b yes 8 4.b odd 2 1
308.3.s.b yes 8 11.d odd 10 1
308.3.s.b yes 8 28.d even 2 1
308.3.s.b yes 8 77.l even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(308, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{43}^{4} - 58T_{43}^{3} - 5881T_{43}^{2} + 341098T_{43} - 2689679 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 3 T^{7} + \cdots + 256 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 7 T^{3} + \cdots + 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - 6 T^{7} + \cdots + 214358881 \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 16736855641 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 3434605986361 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 2470432641121 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} - 58 T^{3} + \cdots - 2689679)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 15\!\cdots\!61 \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 703012824043321 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 4976517717721 \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 8422062522241 \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less