Properties

Label 2-310-1.1-c7-0-22
Degree $2$
Conductor $310$
Sign $-1$
Analytic cond. $96.8393$
Root an. cond. $9.84069$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 89.7·3-s + 64·4-s − 125·5-s + 718.·6-s + 78.5·7-s − 512·8-s + 5.87e3·9-s + 1.00e3·10-s − 509.·11-s − 5.74e3·12-s − 8.64e3·13-s − 628.·14-s + 1.12e4·15-s + 4.09e3·16-s − 3.24e4·17-s − 4.69e4·18-s − 2.09e4·19-s − 8.00e3·20-s − 7.04e3·21-s + 4.07e3·22-s + 2.52e4·23-s + 4.59e4·24-s + 1.56e4·25-s + 6.91e4·26-s − 3.31e5·27-s + 5.02e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.91·3-s + 0.5·4-s − 0.447·5-s + 1.35·6-s + 0.0865·7-s − 0.353·8-s + 2.68·9-s + 0.316·10-s − 0.115·11-s − 0.959·12-s − 1.09·13-s − 0.0611·14-s + 0.858·15-s + 0.250·16-s − 1.59·17-s − 1.89·18-s − 0.699·19-s − 0.223·20-s − 0.166·21-s + 0.0815·22-s + 0.432·23-s + 0.678·24-s + 0.199·25-s + 0.771·26-s − 3.23·27-s + 0.0432·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 310 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(310\)    =    \(2 \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(96.8393\)
Root analytic conductor: \(9.84069\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 310,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
5 \( 1 + 125T \)
31 \( 1 - 2.97e4T \)
good3 \( 1 + 89.7T + 2.18e3T^{2} \)
7 \( 1 - 78.5T + 8.23e5T^{2} \)
11 \( 1 + 509.T + 1.94e7T^{2} \)
13 \( 1 + 8.64e3T + 6.27e7T^{2} \)
17 \( 1 + 3.24e4T + 4.10e8T^{2} \)
19 \( 1 + 2.09e4T + 8.93e8T^{2} \)
23 \( 1 - 2.52e4T + 3.40e9T^{2} \)
29 \( 1 - 7.69e4T + 1.72e10T^{2} \)
37 \( 1 - 3.70e5T + 9.49e10T^{2} \)
41 \( 1 - 3.11e5T + 1.94e11T^{2} \)
43 \( 1 - 2.22e5T + 2.71e11T^{2} \)
47 \( 1 + 1.25e5T + 5.06e11T^{2} \)
53 \( 1 + 5.94e5T + 1.17e12T^{2} \)
59 \( 1 - 9.63e5T + 2.48e12T^{2} \)
61 \( 1 - 1.74e6T + 3.14e12T^{2} \)
67 \( 1 - 7.92e5T + 6.06e12T^{2} \)
71 \( 1 - 1.44e6T + 9.09e12T^{2} \)
73 \( 1 - 1.84e6T + 1.10e13T^{2} \)
79 \( 1 - 1.93e6T + 1.92e13T^{2} \)
83 \( 1 - 2.97e6T + 2.71e13T^{2} \)
89 \( 1 - 2.59e6T + 4.42e13T^{2} \)
97 \( 1 - 3.19e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24402056713349332176983794792, −9.300123120005368297074454736180, −7.907550831078642799956146648500, −6.90289331496643545131931934246, −6.31738976340749762866149444332, −5.04706430408812849206071296041, −4.29746999832155717623803290732, −2.23362009122687125139139122543, −0.798499402436378994240514405169, 0, 0.798499402436378994240514405169, 2.23362009122687125139139122543, 4.29746999832155717623803290732, 5.04706430408812849206071296041, 6.31738976340749762866149444332, 6.90289331496643545131931934246, 7.907550831078642799956146648500, 9.300123120005368297074454736180, 10.24402056713349332176983794792

Graph of the $Z$-function along the critical line