Properties

Label 310.8.a.f
Level $310$
Weight $8$
Character orbit 310.a
Self dual yes
Analytic conductor $96.839$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [310,8,Mod(1,310)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(310, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("310.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 310 = 2 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 310.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(96.8393579001\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 14812 x^{8} - 76284 x^{7} + 65389315 x^{6} + 753120238 x^{5} - 93411415542 x^{4} + \cdots - 37\!\cdots\!08 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{9}\cdot 5\cdot 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 q^{2} + \beta_1 q^{3} + 64 q^{4} - 125 q^{5} - 8 \beta_1 q^{6} + (\beta_{5} - 2 \beta_1 + 52) q^{7} - 512 q^{8} + (\beta_{8} + \beta_{7} - \beta_{5} + \cdots + 775) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{2} + \beta_1 q^{3} + 64 q^{4} - 125 q^{5} - 8 \beta_1 q^{6} + (\beta_{5} - 2 \beta_1 + 52) q^{7} - 512 q^{8} + (\beta_{8} + \beta_{7} - \beta_{5} + \cdots + 775) q^{9}+ \cdots + (1514 \beta_{9} - 792 \beta_{8} + \cdots - 3080266) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 80 q^{2} + 640 q^{4} - 1250 q^{5} + 516 q^{7} - 5120 q^{8} + 7754 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 80 q^{2} + 640 q^{4} - 1250 q^{5} + 516 q^{7} - 5120 q^{8} + 7754 q^{9} + 10000 q^{10} - 2390 q^{11} - 9168 q^{13} - 4128 q^{14} + 40960 q^{16} - 43152 q^{17} - 62032 q^{18} + 4002 q^{19} - 80000 q^{20} - 59254 q^{21} + 19120 q^{22} + 18376 q^{23} + 156250 q^{25} + 73344 q^{26} + 228852 q^{27} + 33024 q^{28} + 224506 q^{29} + 297910 q^{31} - 327680 q^{32} - 38532 q^{33} + 345216 q^{34} - 64500 q^{35} + 496256 q^{36} + 128856 q^{37} - 32016 q^{38} - 624968 q^{39} + 640000 q^{40} - 265640 q^{41} + 474032 q^{42} - 1003362 q^{43} - 152960 q^{44} - 969250 q^{45} - 147008 q^{46} - 1407424 q^{47} + 2153146 q^{49} - 1250000 q^{50} + 3445714 q^{51} - 586752 q^{52} - 1196718 q^{53} - 1830816 q^{54} + 298750 q^{55} - 264192 q^{56} + 2915882 q^{57} - 1796048 q^{58} + 161794 q^{59} + 3433884 q^{61} - 2383280 q^{62} - 2713864 q^{63} + 2621440 q^{64} + 1146000 q^{65} + 308256 q^{66} - 502916 q^{67} - 2761728 q^{68} - 716816 q^{69} + 516000 q^{70} + 2877450 q^{71} - 3970048 q^{72} + 1998674 q^{73} - 1030848 q^{74} + 256128 q^{76} + 1889492 q^{77} + 4999744 q^{78} + 15998410 q^{79} - 5120000 q^{80} + 30700054 q^{81} + 2125120 q^{82} + 3249242 q^{83} - 3792256 q^{84} + 5394000 q^{85} + 8026896 q^{86} + 10727464 q^{87} + 1223680 q^{88} - 6750070 q^{89} + 7754000 q^{90} + 27840660 q^{91} + 1176064 q^{92} + 11259392 q^{94} - 500250 q^{95} + 2479820 q^{97} - 17225168 q^{98} - 30789300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 14812 x^{8} - 76284 x^{7} + 65389315 x^{6} + 753120238 x^{5} - 93411415542 x^{4} + \cdots - 37\!\cdots\!08 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 54\!\cdots\!79 \nu^{9} + \cdots + 47\!\cdots\!28 ) / 62\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 80\!\cdots\!25 \nu^{9} + \cdots + 28\!\cdots\!04 ) / 62\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 45\!\cdots\!71 \nu^{9} + \cdots + 12\!\cdots\!88 ) / 20\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 10\!\cdots\!09 \nu^{9} + \cdots + 17\!\cdots\!56 ) / 44\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 25\!\cdots\!03 \nu^{9} + \cdots + 67\!\cdots\!76 ) / 10\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 74\!\cdots\!81 \nu^{9} + \cdots - 19\!\cdots\!48 ) / 26\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 16\!\cdots\!35 \nu^{9} + \cdots + 26\!\cdots\!96 ) / 31\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 13\!\cdots\!29 \nu^{9} + \cdots - 30\!\cdots\!24 ) / 20\!\cdots\!04 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{8} + \beta_{7} - \beta_{5} + 8\beta _1 + 2962 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( - \beta_{9} + 46 \beta_{8} - \beta_{7} - 7 \beta_{6} - 36 \beta_{5} - 59 \beta_{4} + 15 \beta_{3} + \cdots + 22865 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 246 \beta_{9} + 7789 \beta_{8} + 8231 \beta_{7} + 1444 \beta_{6} - 9407 \beta_{5} + 973 \beta_{4} + \cdots + 17719850 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 36066 \beta_{9} + 492856 \beta_{8} - 45019 \beta_{7} - 90062 \beta_{6} - 382121 \beta_{5} + \cdots + 188137478 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2639853 \beta_{9} + 62597754 \beta_{8} + 64762687 \beta_{7} + 14963458 \beta_{6} - 83748325 \beta_{5} + \cdots + 126569138845 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 476856961 \beta_{9} + 4389104642 \beta_{8} - 542716045 \beta_{7} - 869622517 \beta_{6} + \cdots + 1238396215337 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 25840801036 \beta_{9} + 512621157295 \beta_{8} + 510531283767 \beta_{7} + 126615714718 \beta_{6} + \cdots + 958579447406880 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 4662712777792 \beta_{9} + 37123324849614 \beta_{8} - 5299767600503 \beta_{7} - 7577345524116 \beta_{6} + \cdots + 76\!\cdots\!80 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−89.7844
−53.1803
−45.4596
−23.1269
−20.2671
6.47639
21.7969
38.5839
75.0454
89.9159
−8.00000 −89.7844 64.0000 −125.000 718.275 78.5007 −512.000 5874.23 1000.00
1.2 −8.00000 −53.1803 64.0000 −125.000 425.443 1539.21 −512.000 641.147 1000.00
1.3 −8.00000 −45.4596 64.0000 −125.000 363.677 −1368.57 −512.000 −120.423 1000.00
1.4 −8.00000 −23.1269 64.0000 −125.000 185.015 −1273.98 −512.000 −1652.15 1000.00
1.5 −8.00000 −20.2671 64.0000 −125.000 162.137 1660.61 −512.000 −1776.24 1000.00
1.6 −8.00000 6.47639 64.0000 −125.000 −51.8111 −202.305 −512.000 −2145.06 1000.00
1.7 −8.00000 21.7969 64.0000 −125.000 −174.375 382.733 −512.000 −1711.90 1000.00
1.8 −8.00000 38.5839 64.0000 −125.000 −308.671 −54.6838 −512.000 −698.286 1000.00
1.9 −8.00000 75.0454 64.0000 −125.000 −600.363 754.474 −512.000 3444.81 1000.00
1.10 −8.00000 89.9159 64.0000 −125.000 −719.327 −999.986 −512.000 5897.86 1000.00
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 310.8.a.f 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
310.8.a.f 10 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{10} - 14812 T_{3}^{8} - 76284 T_{3}^{7} + 65389315 T_{3}^{6} + 753120238 T_{3}^{5} + \cdots - 37\!\cdots\!08 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(310))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 8)^{10} \) Copy content Toggle raw display
$3$ \( T^{10} + \cdots - 37\!\cdots\!08 \) Copy content Toggle raw display
$5$ \( (T + 125)^{10} \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$11$ \( T^{10} + \cdots + 72\!\cdots\!80 \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots - 40\!\cdots\!92 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{10} + \cdots + 92\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots - 71\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots - 91\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T - 29791)^{10} \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots - 50\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots - 93\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots - 27\!\cdots\!40 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 11\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots - 66\!\cdots\!40 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots - 13\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 80\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots + 54\!\cdots\!20 \) Copy content Toggle raw display
show more
show less