L(s) = 1 | − 8·2-s − 53.1·3-s + 64·4-s − 125·5-s + 425.·6-s + 1.53e3·7-s − 512·8-s + 641.·9-s + 1.00e3·10-s − 5.52e3·11-s − 3.40e3·12-s + 1.33e4·13-s − 1.23e4·14-s + 6.64e3·15-s + 4.09e3·16-s − 1.29e4·17-s − 5.12e3·18-s − 3.25e4·19-s − 8.00e3·20-s − 8.18e4·21-s + 4.41e4·22-s − 1.58e4·23-s + 2.72e4·24-s + 1.56e4·25-s − 1.07e5·26-s + 8.22e4·27-s + 9.85e4·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.13·3-s + 0.5·4-s − 0.447·5-s + 0.804·6-s + 1.69·7-s − 0.353·8-s + 0.293·9-s + 0.316·10-s − 1.25·11-s − 0.568·12-s + 1.68·13-s − 1.19·14-s + 0.508·15-s + 0.250·16-s − 0.641·17-s − 0.207·18-s − 1.08·19-s − 0.223·20-s − 1.92·21-s + 0.884·22-s − 0.271·23-s + 0.402·24-s + 0.199·25-s − 1.19·26-s + 0.803·27-s + 0.848·28-s + ⋯ |
Λ(s)=(=(310s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(310s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 5 | 1+125T |
| 31 | 1−2.97e4T |
good | 3 | 1+53.1T+2.18e3T2 |
| 7 | 1−1.53e3T+8.23e5T2 |
| 11 | 1+5.52e3T+1.94e7T2 |
| 13 | 1−1.33e4T+6.27e7T2 |
| 17 | 1+1.29e4T+4.10e8T2 |
| 19 | 1+3.25e4T+8.93e8T2 |
| 23 | 1+1.58e4T+3.40e9T2 |
| 29 | 1+7.06e4T+1.72e10T2 |
| 37 | 1+5.39e5T+9.49e10T2 |
| 41 | 1−2.22e5T+1.94e11T2 |
| 43 | 1−5.73e5T+2.71e11T2 |
| 47 | 1−9.29e5T+5.06e11T2 |
| 53 | 1−6.56e4T+1.17e12T2 |
| 59 | 1−9.74e5T+2.48e12T2 |
| 61 | 1−1.85e6T+3.14e12T2 |
| 67 | 1−1.16e5T+6.06e12T2 |
| 71 | 1+2.10e6T+9.09e12T2 |
| 73 | 1−3.05e6T+1.10e13T2 |
| 79 | 1+1.69e6T+1.92e13T2 |
| 83 | 1+7.41e6T+2.71e13T2 |
| 89 | 1−5.80e6T+4.42e13T2 |
| 97 | 1−1.48e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63863337392573531521837488156, −8.679996656666741462816159882719, −8.293660570777776339708564508287, −7.22515773722469750211319590445, −6.00740614946798795977013860763, −5.19885477851822604934628034207, −4.08862196297858400313116921841, −2.23274030983479114006613027380, −1.06699615105444387296562391823, 0,
1.06699615105444387296562391823, 2.23274030983479114006613027380, 4.08862196297858400313116921841, 5.19885477851822604934628034207, 6.00740614946798795977013860763, 7.22515773722469750211319590445, 8.293660570777776339708564508287, 8.679996656666741462816159882719, 10.63863337392573531521837488156