Properties

Label 2-3104-776.387-c0-0-4
Degree $2$
Conductor $3104$
Sign $1$
Analytic cond. $1.54909$
Root an. cond. $1.24462$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.618·3-s + 1.90·5-s + 1.17·7-s − 0.618·9-s − 1.61·11-s − 1.17·15-s − 0.726·21-s + 1.90·23-s + 2.61·25-s + 27-s − 1.17·29-s + 1.00·33-s + 2.23·35-s + 1.17·37-s + 0.618·43-s − 1.17·45-s + 0.381·49-s − 3.07·55-s − 0.726·63-s − 1.17·69-s + 0.618·73-s − 1.61·75-s − 1.90·77-s + 0.726·87-s − 1.61·89-s − 97-s + 0.999·99-s + ⋯
L(s)  = 1  − 0.618·3-s + 1.90·5-s + 1.17·7-s − 0.618·9-s − 1.61·11-s − 1.17·15-s − 0.726·21-s + 1.90·23-s + 2.61·25-s + 27-s − 1.17·29-s + 1.00·33-s + 2.23·35-s + 1.17·37-s + 0.618·43-s − 1.17·45-s + 0.381·49-s − 3.07·55-s − 0.726·63-s − 1.17·69-s + 0.618·73-s − 1.61·75-s − 1.90·77-s + 0.726·87-s − 1.61·89-s − 97-s + 0.999·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3104\)    =    \(2^{5} \cdot 97\)
Sign: $1$
Analytic conductor: \(1.54909\)
Root analytic conductor: \(1.24462\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3104} (1551, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3104,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.471351063\)
\(L(\frac12)\) \(\approx\) \(1.471351063\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
97 \( 1 + T \)
good3 \( 1 + 0.618T + T^{2} \)
5 \( 1 - 1.90T + T^{2} \)
7 \( 1 - 1.17T + T^{2} \)
11 \( 1 + 1.61T + T^{2} \)
13 \( 1 + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - 1.90T + T^{2} \)
29 \( 1 + 1.17T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - 1.17T + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - 0.618T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 - 0.618T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + 1.61T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.954703446201520601902076244677, −8.188248028110388130480359521949, −7.34182668652713979329700221657, −6.41844317506333171614337114532, −5.50686430980829053919468564173, −5.36757934358516239986677384224, −4.67998348222682603225291530528, −2.88703602176581564913693923500, −2.31311234255746116173229814516, −1.21987291166824467592526166629, 1.21987291166824467592526166629, 2.31311234255746116173229814516, 2.88703602176581564913693923500, 4.67998348222682603225291530528, 5.36757934358516239986677384224, 5.50686430980829053919468564173, 6.41844317506333171614337114532, 7.34182668652713979329700221657, 8.188248028110388130480359521949, 8.954703446201520601902076244677

Graph of the $Z$-function along the critical line