L(s) = 1 | − 0.618·3-s + 1.90·5-s + 1.17·7-s − 0.618·9-s − 1.61·11-s − 1.17·15-s − 0.726·21-s + 1.90·23-s + 2.61·25-s + 27-s − 1.17·29-s + 1.00·33-s + 2.23·35-s + 1.17·37-s + 0.618·43-s − 1.17·45-s + 0.381·49-s − 3.07·55-s − 0.726·63-s − 1.17·69-s + 0.618·73-s − 1.61·75-s − 1.90·77-s + 0.726·87-s − 1.61·89-s − 97-s + 0.999·99-s + ⋯ |
L(s) = 1 | − 0.618·3-s + 1.90·5-s + 1.17·7-s − 0.618·9-s − 1.61·11-s − 1.17·15-s − 0.726·21-s + 1.90·23-s + 2.61·25-s + 27-s − 1.17·29-s + 1.00·33-s + 2.23·35-s + 1.17·37-s + 0.618·43-s − 1.17·45-s + 0.381·49-s − 3.07·55-s − 0.726·63-s − 1.17·69-s + 0.618·73-s − 1.61·75-s − 1.90·77-s + 0.726·87-s − 1.61·89-s − 97-s + 0.999·99-s + ⋯ |
Λ(s)=(=(3104s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3104s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3104
= 25⋅97
|
Sign: |
1
|
Analytic conductor: |
1.54909 |
Root analytic conductor: |
1.24462 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3104(1551,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3104, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.471351063 |
L(21) |
≈ |
1.471351063 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 97 | 1+T |
good | 3 | 1+0.618T+T2 |
| 5 | 1−1.90T+T2 |
| 7 | 1−1.17T+T2 |
| 11 | 1+1.61T+T2 |
| 13 | 1+T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1−1.90T+T2 |
| 29 | 1+1.17T+T2 |
| 31 | 1−T2 |
| 37 | 1−1.17T+T2 |
| 41 | 1−T2 |
| 43 | 1−0.618T+T2 |
| 47 | 1−T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1+T2 |
| 73 | 1−0.618T+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+1.61T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.954703446201520601902076244677, −8.188248028110388130480359521949, −7.34182668652713979329700221657, −6.41844317506333171614337114532, −5.50686430980829053919468564173, −5.36757934358516239986677384224, −4.67998348222682603225291530528, −2.88703602176581564913693923500, −2.31311234255746116173229814516, −1.21987291166824467592526166629,
1.21987291166824467592526166629, 2.31311234255746116173229814516, 2.88703602176581564913693923500, 4.67998348222682603225291530528, 5.36757934358516239986677384224, 5.50686430980829053919468564173, 6.41844317506333171614337114532, 7.34182668652713979329700221657, 8.188248028110388130480359521949, 8.954703446201520601902076244677