Properties

Label 3104.1.h.d.1551.2
Level 31043104
Weight 11
Character 3104.1551
Self dual yes
Analytic conductor 1.5491.549
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -776
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3104,1,Mod(1551,3104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3104, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3104.1551");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3104=2597 3104 = 2^{5} \cdot 97
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3104.h (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.549097799211.54909779921
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ20)+\Q(\zeta_{20})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x45x2+5 x^{4} - 5x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 776)
Projective image: D10D_{10}
Projective field: Galois closure of 10.0.2900927479808.1

Embedding invariants

Embedding label 1551.2
Root 1.90211-1.90211 of defining polynomial
Character χ\chi == 3104.1551

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.618034q3+1.90211q5+1.17557q70.618034q91.61803q111.17557q150.726543q21+1.90211q23+2.61803q25+1.00000q271.17557q29+1.00000q33+2.23607q35+1.17557q37+0.618034q431.17557q45+0.381966q493.07768q550.726543q631.17557q69+0.618034q731.61803q751.90211q77+0.726543q871.61803q891.00000q97+1.00000q99+O(q100)q-0.618034 q^{3} +1.90211 q^{5} +1.17557 q^{7} -0.618034 q^{9} -1.61803 q^{11} -1.17557 q^{15} -0.726543 q^{21} +1.90211 q^{23} +2.61803 q^{25} +1.00000 q^{27} -1.17557 q^{29} +1.00000 q^{33} +2.23607 q^{35} +1.17557 q^{37} +0.618034 q^{43} -1.17557 q^{45} +0.381966 q^{49} -3.07768 q^{55} -0.726543 q^{63} -1.17557 q^{69} +0.618034 q^{73} -1.61803 q^{75} -1.90211 q^{77} +0.726543 q^{87} -1.61803 q^{89} -1.00000 q^{97} +1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q3+2q92q11+6q25+4q27+4q332q43+6q492q732q752q894q97+4q99+O(q100) 4 q + 2 q^{3} + 2 q^{9} - 2 q^{11} + 6 q^{25} + 4 q^{27} + 4 q^{33} - 2 q^{43} + 6 q^{49} - 2 q^{73} - 2 q^{75} - 2 q^{89} - 4 q^{97} + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3104Z)×\left(\mathbb{Z}/3104\mathbb{Z}\right)^\times.

nn 389389 27212721 29112911
χ(n)\chi(n) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
44 0 0
55 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
66 0 0
77 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
88 0 0
99 −0.618034 −0.618034
1010 0 0
1111 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 −1.17557 −1.17557
1616 0 0
1717 0 0 1.00000 00
−1.00000 π\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 −0.726543 −0.726543
2222 0 0
2323 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
2424 0 0
2525 2.61803 2.61803
2626 0 0
2727 1.00000 1.00000
2828 0 0
2929 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 1.00000 1.00000
3434 0 0
3535 2.23607 2.23607
3636 0 0
3737 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
4444 0 0
4545 −1.17557 −1.17557
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 0.381966 0.381966
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −3.07768 −3.07768
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 −0.726543 −0.726543
6464 0 0
6565 0 0
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 −1.17557 −1.17557
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
7474 0 0
7575 −1.61803 −1.61803
7676 0 0
7777 −1.90211 −1.90211
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 0 0
8787 0.726543 0.726543
8888 0 0
8989 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −1.00000 −1.00000
9898 0 0
9999 1.00000 1.00000
100100 0 0
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 −1.38197 −1.38197
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 −0.726543 −0.726543
112112 0 0
113113 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
114114 0 0
115115 3.61803 3.61803
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 1.61803 1.61803
122122 0 0
123123 0 0
124124 0 0
125125 3.07768 3.07768
126126 0 0
127127 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
128128 0 0
129129 −0.381966 −0.381966
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 1.90211 1.90211
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 −2.23607 −2.23607
146146 0 0
147147 −0.236068 −0.236068
148148 0 0
149149 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
158158 0 0
159159 0 0
160160 0 0
161161 2.23607 2.23607
162162 0 0
163163 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
164164 0 0
165165 1.90211 1.90211
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 −1.00000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
174174 0 0
175175 3.07768 3.07768
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
182182 0 0
183183 0 0
184184 0 0
185185 2.23607 2.23607
186186 0 0
187187 0 0
188188 0 0
189189 1.17557 1.17557
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 −1.38197 −1.38197
204204 0 0
205205 0 0
206206 0 0
207207 −1.17557 −1.17557
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 1.17557 1.17557
216216 0 0
217217 0 0
218218 0 0
219219 −0.381966 −0.381966
220220 0 0
221221 0 0
222222 0 0
223223 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
224224 0 0
225225 −1.61803 −1.61803
226226 0 0
227227 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 1.17557 1.17557
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
240240 0 0
241241 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
242242 0 0
243243 −1.00000 −1.00000
244244 0 0
245245 0.726543 0.726543
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 −3.07768 −3.07768
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 1.38197 1.38197
260260 0 0
261261 0.726543 0.726543
262262 0 0
263263 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
264264 0 0
265265 0 0
266266 0 0
267267 1.00000 1.00000
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
272272 0 0
273273 0 0
274274 0 0
275275 −4.23607 −4.23607
276276 0 0
277277 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 1.00000 1.00000
290290 0 0
291291 0.618034 0.618034
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 −1.61803 −1.61803
298298 0 0
299299 0 0
300300 0 0
301301 0.726543 0.726543
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
308308 0 0
309309 0 0
310310 0 0
311311 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
312312 0 0
313313 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
314314 0 0
315315 −1.38197 −1.38197
316316 0 0
317317 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
318318 0 0
319319 1.90211 1.90211
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 −0.726543 −0.726543
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0.381966 0.381966
340340 0 0
341341 0 0
342342 0 0
343343 −0.726543 −0.726543
344344 0 0
345345 −2.23607 −2.23607
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 −1.00000 −1.00000
364364 0 0
365365 1.17557 1.17557
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
374374 0 0
375375 −1.90211 −1.90211
376376 0 0
377377 0 0
378378 0 0
379379 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
380380 0 0
381381 1.17557 1.17557
382382 0 0
383383 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
384384 0 0
385385 −3.61803 −3.61803
386386 0 0
387387 −0.381966 −0.381966
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 −1.90211 −1.90211
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 1.38197 1.38197
436436 0 0
437437 0 0
438438 0 0
439439 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
440440 0 0
441441 −0.236068 −0.236068
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 −3.07768 −3.07768
446446 0 0
447447 1.17557 1.17557
448448 0 0
449449 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
468468 0 0
469469 0 0
470470 0 0
471471 −1.17557 −1.17557
472472 0 0
473473 −1.00000 −1.00000
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 −1.38197 −1.38197
484484 0 0
485485 −1.90211 −1.90211
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 −0.381966 −0.381966
490490 0 0
491491 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
492492 0 0
493493 0 0
494494 0 0
495495 1.90211 1.90211
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.618034 0.618034
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0.726543 0.726543
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −0.726543 −0.726543
520520 0 0
521521 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 −1.90211 −1.90211
526526 0 0
527527 0 0
528528 0 0
529529 2.61803 2.61803
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −0.618034 −0.618034
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 1.17557 1.17557
544544 0 0
545545 0 0
546546 0 0
547547 2.00000 2.00000 1.00000 00
1.00000 00
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 −1.38197 −1.38197
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 −1.17557 −1.17557
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
572572 0 0
573573 0 0
574574 0 0
575575 4.97980 4.97980
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 1.00000 1.00000
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 3.07768 3.07768
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0.854102 0.854102
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 1.90211 1.90211
622622 0 0
623623 −1.90211 −1.90211
624624 0 0
625625 3.23607 3.23607
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 −3.61803 −3.61803
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
644644 0 0
645645 −0.726543 −0.726543
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
654654 0 0
655655 0 0
656656 0 0
657657 −0.381966 −0.381966
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 −2.23607 −2.23607
668668 0 0
669669 −1.17557 −1.17557
670670 0 0
671671 0 0
672672 0 0
673673 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
674674 0 0
675675 2.61803 2.61803
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 −1.17557 −1.17557
680680 0 0
681681 −1.00000 −1.00000
682682 0 0
683683 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
692692 0 0
693693 1.17557 1.17557
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0.726543 0.726543
718718 0 0
719719 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
720720 0 0
721721 0 0
722722 0 0
723723 −0.381966 −0.381966
724724 0 0
725725 −3.07768 −3.07768
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0.618034 0.618034
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 −0.449028 −0.449028
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 −3.61803 −3.61803
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
758758 0 0
759759 1.90211 1.90211
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0 0
777777 −0.854102 −0.854102
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −1.17557 −1.17557
784784 0 0
785785 3.61803 3.61803
786786 0 0
787787 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
788788 0 0
789789 0.726543 0.726543
790790 0 0
791791 −0.726543 −0.726543
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
798798 0 0
799799 0 0
800800 0 0
801801 1.00000 1.00000
802802 0 0
803803 −1.00000 −1.00000
804804 0 0
805805 4.25325 4.25325
806806 0 0
807807 0 0
808808 0 0
809809 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
810810 0 0
811811 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
812812 0 0
813813 0.726543 0.726543
814814 0 0
815815 1.17557 1.17557
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 2.61803 2.61803
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 1.17557 1.17557
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
840840 0 0
841841 0.381966 0.381966
842842 0 0
843843 0 0
844844 0 0
845845 −1.90211 −1.90211
846846 0 0
847847 1.90211 1.90211
848848 0 0
849849 1.00000 1.00000
850850 0 0
851851 2.23607 2.23607
852852 0 0
853853 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
854854 0 0
855855 0 0
856856 0 0
857857 2.00000 2.00000 1.00000 00
1.00000 00
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 2.23607 2.23607
866866 0 0
867867 −0.618034 −0.618034
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.618034 0.618034
874874 0 0
875875 3.61803 3.61803
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 0 0
880880 0 0
881881 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 −2.23607 −2.23607
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 −0.449028 −0.449028
904904 0 0
905905 −3.61803 −3.61803
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 1.00000 1.00000
922922 0 0
923923 0 0
924924 0 0
925925 3.07768 3.07768
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 −1.17557 −1.17557
934934 0 0
935935 0 0
936936 0 0
937937 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
938938 0 0
939939 −1.00000 −1.00000
940940 0 0
941941 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
942942 0 0
943943 0 0
944944 0 0
945945 2.23607 2.23607
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0.726543 0.726543
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 −1.17557 −1.17557
958958 0 0
959959 0 0
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 −3.07768 −3.07768
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 2.00000 2.00000 1.00000 00
1.00000 00
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 2.61803 2.61803
980980 0 0
981981 0 0
982982 0 0
983983 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 1.17557 1.17557
990990 0 0
991991 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 0 0
999999 1.17557 1.17557
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3104.1.h.d.1551.2 4
4.3 odd 2 776.1.h.d.387.4 yes 4
8.3 odd 2 inner 3104.1.h.d.1551.1 4
8.5 even 2 776.1.h.d.387.3 4
97.96 even 2 inner 3104.1.h.d.1551.1 4
388.387 odd 2 776.1.h.d.387.3 4
776.387 odd 2 CM 3104.1.h.d.1551.2 4
776.581 even 2 776.1.h.d.387.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
776.1.h.d.387.3 4 8.5 even 2
776.1.h.d.387.3 4 388.387 odd 2
776.1.h.d.387.4 yes 4 4.3 odd 2
776.1.h.d.387.4 yes 4 776.581 even 2
3104.1.h.d.1551.1 4 8.3 odd 2 inner
3104.1.h.d.1551.1 4 97.96 even 2 inner
3104.1.h.d.1551.2 4 1.1 even 1 trivial
3104.1.h.d.1551.2 4 776.387 odd 2 CM