L(s) = 1 | + 1.41i·2-s + (−1.55 + 0.767i)3-s − 2.00·4-s − 0.380i·5-s + (−1.08 − 2.19i)6-s − 2.28·7-s − 2.82i·8-s + (1.82 − 2.38i)9-s + 0.538·10-s + (3.10 − 1.53i)12-s − 3.60·13-s − 3.23i·14-s + (0.292 + 0.591i)15-s + 4.00·16-s − 7.83i·17-s + (3.37 + 2.57i)18-s + ⋯ |
L(s) = 1 | + 0.999i·2-s + (−0.896 + 0.443i)3-s − 1.00·4-s − 0.170i·5-s + (−0.443 − 0.896i)6-s − 0.863·7-s − 1.00i·8-s + (0.607 − 0.794i)9-s + 0.170·10-s + (0.896 − 0.443i)12-s − 1.00·13-s − 0.863i·14-s + (0.0754 + 0.152i)15-s + 1.00·16-s − 1.90i·17-s + (0.794 + 0.607i)18-s + ⋯ |
Λ(s)=(=(312s/2ΓC(s)L(s)(0.443+0.896i)Λ(2−s)
Λ(s)=(=(312s/2ΓC(s+1/2)L(s)(0.443+0.896i)Λ(1−s)
Degree: |
2 |
Conductor: |
312
= 23⋅3⋅13
|
Sign: |
0.443+0.896i
|
Analytic conductor: |
2.49133 |
Root analytic conductor: |
1.57839 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ312(155,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 312, ( :1/2), 0.443+0.896i)
|
Particular Values
L(1) |
≈ |
0.219701−0.136482i |
L(21) |
≈ |
0.219701−0.136482i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−1.41iT |
| 3 | 1+(1.55−0.767i)T |
| 13 | 1+3.60T |
good | 5 | 1+0.380iT−5T2 |
| 7 | 1+2.28T+7T2 |
| 11 | 1+11T2 |
| 17 | 1+7.83iT−17T2 |
| 19 | 1−19T2 |
| 23 | 1+23T2 |
| 29 | 1+29T2 |
| 31 | 1+7.21T+31T2 |
| 37 | 1+8.79T+37T2 |
| 41 | 1+41T2 |
| 43 | 1+10.3T+43T2 |
| 47 | 1+13.5iT−47T2 |
| 53 | 1+53T2 |
| 59 | 1+59T2 |
| 61 | 1−61T2 |
| 67 | 1−67T2 |
| 71 | 1−12.7iT−71T2 |
| 73 | 1−73T2 |
| 79 | 1−79T2 |
| 83 | 1+83T2 |
| 89 | 1+89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65133541419484359875122874800, −10.25554400946308791614960573156, −9.623345201683286626388382891229, −8.818750415132438868678351804107, −7.16899783264523922554126518871, −6.79526842487234506650208873690, −5.40694147452888918360582136569, −4.86630223078032223238333588576, −3.42488526538839223362232812270, −0.20697619039409394745641629213,
1.78968380181422057476564394585, 3.35808257439132874705872679781, 4.70490995987245699692893181151, 5.82516923682762429920774963099, 6.88107832735138830933501735548, 8.111510804251233655252644826224, 9.347540266538928316820560224185, 10.34418058825359334254738814091, 10.81103081084552777747365829438, 11.94574708215901236145182258630