Properties

Label 312.2.h.b
Level $312$
Weight $2$
Character orbit 312.h
Analytic conductor $2.491$
Analytic rank $0$
Dimension $12$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(155,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.155");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{9} + 92x^{6} - 68x^{3} + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + \beta_{7} q^{3} - 2 q^{4} - \beta_{9} q^{5} - \beta_{4} q^{6} + (\beta_{8} + \beta_{4}) q^{7} - 2 \beta_{3} q^{8} - \beta_{2} q^{9} + (\beta_{7} + \beta_{6} - \beta_{2}) q^{10} - 2 \beta_{7} q^{12}+ \cdots + (3 \beta_{9} + \beta_{8} + \cdots + 7 \beta_{3}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{4} + 48 q^{16} - 60 q^{25} - 12 q^{27} + 24 q^{30} - 48 q^{42} + 84 q^{49} + 60 q^{51} - 96 q^{64} - 84 q^{75} + 96 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 16x^{9} + 92x^{6} - 68x^{3} + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{9} - 21\nu^{6} + 16\nu^{3} + 372 ) / 105 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{10} + 18\nu^{7} - 113\nu^{4} + 144\nu ) / 30 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{9} + 49\nu^{6} - 269\nu^{3} + 107 ) / 70 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 6\nu^{11} - 98\nu^{8} + 573\nu^{5} - 529\nu^{2} ) / 105 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 40\nu^{11} - 9\nu^{10} - 595\nu^{8} + 147\nu^{7} + 3050\nu^{5} - 1017\nu^{4} + 475\nu^{2} + 2211\nu ) / 630 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4\nu^{11} - 6\nu^{10} - 67\nu^{8} + 93\nu^{7} + 422\nu^{5} - 498\nu^{4} - 521\nu^{2} + 159\nu ) / 90 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2\nu^{11} - 31\nu^{8} + 166\nu^{5} - 23\nu^{2} ) / 30 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 40\nu^{11} - 42\nu^{10} - 595\nu^{8} + 651\nu^{7} + 3050\nu^{5} - 3486\nu^{4} + 475\nu^{2} - 147\nu ) / 630 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 40\nu^{11} + 51\nu^{10} - 595\nu^{8} - 798\nu^{7} + 3050\nu^{5} + 4503\nu^{4} + 475\nu^{2} - 2064\nu ) / 630 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -4\nu^{11} - 12\nu^{10} + 67\nu^{8} + 186\nu^{7} - 422\nu^{5} - 996\nu^{4} + 521\nu^{2} + 318\nu ) / 90 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{9} - 15\nu^{6} + 83\nu^{3} - 33 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{10} + \beta_{9} - 2\beta_{8} + \beta_{6} + \beta_{5} ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{10} - \beta_{9} - \beta_{8} + 6\beta_{7} + 2\beta_{6} - \beta_{5} - 6\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{11} + 3\beta_{3} - 2\beta _1 + 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 10\beta_{10} + 16\beta_{9} - 11\beta_{8} + 10\beta_{6} - 5\beta_{5} + 3\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -13\beta_{10} - \beta_{9} - \beta_{8} + 18\beta_{7} + 26\beta_{6} - \beta_{5} - 48\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 7\beta_{11} + 25\beta_{3} - 5\beta _1 + 18 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 61\beta_{10} + 145\beta_{9} - 38\beta_{8} + 61\beta_{6} - 107\beta_{5} + 108\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -103\beta_{10} + 77\beta_{9} + 77\beta_{8} - 174\beta_{7} + 206\beta_{6} + 77\beta_{5} - 294\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 139\beta_{11} + 501\beta_{3} + 16\beta _1 - 58 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 112\beta_{10} + 946\beta_{9} + 271\beta_{8} + 112\beta_{6} - 1217\beta_{5} + 1425\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( -529\beta_{10} + 1265\beta_{9} + 1265\beta_{8} - 4032\beta_{7} + 1058\beta_{6} + 1265\beta_{5} - 642\beta_{4} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
155.1
−0.205073 0.809425i
−1.34767 1.57689i
−0.691788 + 1.95556i
0.803519 + 0.227114i
−0.598446 + 0.582311i
2.03946 0.378672i
−1.34767 + 1.57689i
−0.205073 + 0.809425i
0.803519 0.227114i
−0.691788 1.95556i
2.03946 + 0.378672i
−0.598446 0.582311i
1.41421i −1.55274 0.767460i −2.00000 0.380805i −1.08535 + 2.19591i −2.28519 2.82843i 1.82201 + 2.38333i 0.538540
155.2 1.41421i −1.55274 + 0.767460i −2.00000 0.380805i 1.08535 + 2.19591i 2.28519 2.82843i 1.82201 2.38333i 0.538540
155.3 1.41421i 0.111731 1.72844i −2.00000 4.04932i −2.44439 0.158012i 2.99062 2.82843i −2.97503 0.386242i −5.72660
155.4 1.41421i 0.111731 + 1.72844i −2.00000 4.04932i 2.44439 0.158012i −2.99062 2.82843i −2.97503 + 0.386242i −5.72660
155.5 1.41421i 1.44101 0.960984i −2.00000 3.66851i −1.35904 2.03790i 5.27581 2.82843i 1.15302 2.76957i 5.18806
155.6 1.41421i 1.44101 + 0.960984i −2.00000 3.66851i 1.35904 2.03790i −5.27581 2.82843i 1.15302 + 2.76957i 5.18806
155.7 1.41421i −1.55274 0.767460i −2.00000 0.380805i 1.08535 2.19591i 2.28519 2.82843i 1.82201 + 2.38333i 0.538540
155.8 1.41421i −1.55274 + 0.767460i −2.00000 0.380805i −1.08535 2.19591i −2.28519 2.82843i 1.82201 2.38333i 0.538540
155.9 1.41421i 0.111731 1.72844i −2.00000 4.04932i 2.44439 + 0.158012i −2.99062 2.82843i −2.97503 0.386242i −5.72660
155.10 1.41421i 0.111731 + 1.72844i −2.00000 4.04932i −2.44439 + 0.158012i 2.99062 2.82843i −2.97503 + 0.386242i −5.72660
155.11 1.41421i 1.44101 0.960984i −2.00000 3.66851i 1.35904 + 2.03790i −5.27581 2.82843i 1.15302 2.76957i 5.18806
155.12 1.41421i 1.44101 + 0.960984i −2.00000 3.66851i −1.35904 + 2.03790i 5.27581 2.82843i 1.15302 + 2.76957i 5.18806
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 155.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)
3.b odd 2 1 inner
8.d odd 2 1 inner
13.b even 2 1 inner
24.f even 2 1 inner
39.d odd 2 1 inner
312.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.2.h.b 12
3.b odd 2 1 inner 312.2.h.b 12
4.b odd 2 1 1248.2.h.b 12
8.b even 2 1 1248.2.h.b 12
8.d odd 2 1 inner 312.2.h.b 12
12.b even 2 1 1248.2.h.b 12
13.b even 2 1 inner 312.2.h.b 12
24.f even 2 1 inner 312.2.h.b 12
24.h odd 2 1 1248.2.h.b 12
39.d odd 2 1 inner 312.2.h.b 12
52.b odd 2 1 1248.2.h.b 12
104.e even 2 1 1248.2.h.b 12
104.h odd 2 1 CM 312.2.h.b 12
156.h even 2 1 1248.2.h.b 12
312.b odd 2 1 1248.2.h.b 12
312.h even 2 1 inner 312.2.h.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.h.b 12 1.a even 1 1 trivial
312.2.h.b 12 3.b odd 2 1 inner
312.2.h.b 12 8.d odd 2 1 inner
312.2.h.b 12 13.b even 2 1 inner
312.2.h.b 12 24.f even 2 1 inner
312.2.h.b 12 39.d odd 2 1 inner
312.2.h.b 12 104.h odd 2 1 CM
312.2.h.b 12 312.h even 2 1 inner
1248.2.h.b 12 4.b odd 2 1
1248.2.h.b 12 8.b even 2 1
1248.2.h.b 12 12.b even 2 1
1248.2.h.b 12 24.h odd 2 1
1248.2.h.b 12 52.b odd 2 1
1248.2.h.b 12 104.e even 2 1
1248.2.h.b 12 156.h even 2 1
1248.2.h.b 12 312.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 30T_{5}^{4} + 225T_{5}^{2} + 32 \) acting on \(S_{2}^{\mathrm{new}}(312, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{6} \) Copy content Toggle raw display
$3$ \( (T^{6} + 2 T^{3} + 27)^{2} \) Copy content Toggle raw display
$5$ \( (T^{6} + 30 T^{4} + \cdots + 32)^{2} \) Copy content Toggle raw display
$7$ \( (T^{6} - 42 T^{4} + \cdots - 1300)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( (T^{2} - 13)^{6} \) Copy content Toggle raw display
$17$ \( (T^{6} + 102 T^{4} + \cdots + 6656)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} \) Copy content Toggle raw display
$29$ \( T^{12} \) Copy content Toggle raw display
$31$ \( (T^{2} - 52)^{6} \) Copy content Toggle raw display
$37$ \( (T^{6} - 222 T^{4} + \cdots - 87412)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} \) Copy content Toggle raw display
$43$ \( (T^{3} - 129 T - 218)^{4} \) Copy content Toggle raw display
$47$ \( (T^{6} + 282 T^{4} + \cdots + 336200)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( T^{12} \) Copy content Toggle raw display
$67$ \( T^{12} \) Copy content Toggle raw display
$71$ \( (T^{6} + 426 T^{4} + \cdots + 397832)^{2} \) Copy content Toggle raw display
$73$ \( T^{12} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} \) Copy content Toggle raw display
$97$ \( T^{12} \) Copy content Toggle raw display
show more
show less