Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [312,2,Mod(155,312)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(312, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("312.155");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 312.h (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
155.1 |
|
− | 1.41421i | −1.55274 | − | 0.767460i | −2.00000 | 0.380805i | −1.08535 | + | 2.19591i | −2.28519 | 2.82843i | 1.82201 | + | 2.38333i | 0.538540 | |||||||||||||||||||||||||||||||||||||||||||||||
155.2 | − | 1.41421i | −1.55274 | + | 0.767460i | −2.00000 | 0.380805i | 1.08535 | + | 2.19591i | 2.28519 | 2.82843i | 1.82201 | − | 2.38333i | 0.538540 | ||||||||||||||||||||||||||||||||||||||||||||||||
155.3 | − | 1.41421i | 0.111731 | − | 1.72844i | −2.00000 | − | 4.04932i | −2.44439 | − | 0.158012i | 2.99062 | 2.82843i | −2.97503 | − | 0.386242i | −5.72660 | |||||||||||||||||||||||||||||||||||||||||||||||
155.4 | − | 1.41421i | 0.111731 | + | 1.72844i | −2.00000 | − | 4.04932i | 2.44439 | − | 0.158012i | −2.99062 | 2.82843i | −2.97503 | + | 0.386242i | −5.72660 | |||||||||||||||||||||||||||||||||||||||||||||||
155.5 | − | 1.41421i | 1.44101 | − | 0.960984i | −2.00000 | 3.66851i | −1.35904 | − | 2.03790i | 5.27581 | 2.82843i | 1.15302 | − | 2.76957i | 5.18806 | ||||||||||||||||||||||||||||||||||||||||||||||||
155.6 | − | 1.41421i | 1.44101 | + | 0.960984i | −2.00000 | 3.66851i | 1.35904 | − | 2.03790i | −5.27581 | 2.82843i | 1.15302 | + | 2.76957i | 5.18806 | ||||||||||||||||||||||||||||||||||||||||||||||||
155.7 | 1.41421i | −1.55274 | − | 0.767460i | −2.00000 | − | 0.380805i | 1.08535 | − | 2.19591i | 2.28519 | − | 2.82843i | 1.82201 | + | 2.38333i | 0.538540 | |||||||||||||||||||||||||||||||||||||||||||||||
155.8 | 1.41421i | −1.55274 | + | 0.767460i | −2.00000 | − | 0.380805i | −1.08535 | − | 2.19591i | −2.28519 | − | 2.82843i | 1.82201 | − | 2.38333i | 0.538540 | |||||||||||||||||||||||||||||||||||||||||||||||
155.9 | 1.41421i | 0.111731 | − | 1.72844i | −2.00000 | 4.04932i | 2.44439 | + | 0.158012i | −2.99062 | − | 2.82843i | −2.97503 | − | 0.386242i | −5.72660 | ||||||||||||||||||||||||||||||||||||||||||||||||
155.10 | 1.41421i | 0.111731 | + | 1.72844i | −2.00000 | 4.04932i | −2.44439 | + | 0.158012i | 2.99062 | − | 2.82843i | −2.97503 | + | 0.386242i | −5.72660 | ||||||||||||||||||||||||||||||||||||||||||||||||
155.11 | 1.41421i | 1.44101 | − | 0.960984i | −2.00000 | − | 3.66851i | 1.35904 | + | 2.03790i | −5.27581 | − | 2.82843i | 1.15302 | − | 2.76957i | 5.18806 | |||||||||||||||||||||||||||||||||||||||||||||||
155.12 | 1.41421i | 1.44101 | + | 0.960984i | −2.00000 | − | 3.66851i | −1.35904 | + | 2.03790i | 5.27581 | − | 2.82843i | 1.15302 | + | 2.76957i | 5.18806 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
104.h | odd | 2 | 1 | CM by |
3.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
39.d | odd | 2 | 1 | inner |
312.h | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 312.2.h.b | ✓ | 12 |
3.b | odd | 2 | 1 | inner | 312.2.h.b | ✓ | 12 |
4.b | odd | 2 | 1 | 1248.2.h.b | 12 | ||
8.b | even | 2 | 1 | 1248.2.h.b | 12 | ||
8.d | odd | 2 | 1 | inner | 312.2.h.b | ✓ | 12 |
12.b | even | 2 | 1 | 1248.2.h.b | 12 | ||
13.b | even | 2 | 1 | inner | 312.2.h.b | ✓ | 12 |
24.f | even | 2 | 1 | inner | 312.2.h.b | ✓ | 12 |
24.h | odd | 2 | 1 | 1248.2.h.b | 12 | ||
39.d | odd | 2 | 1 | inner | 312.2.h.b | ✓ | 12 |
52.b | odd | 2 | 1 | 1248.2.h.b | 12 | ||
104.e | even | 2 | 1 | 1248.2.h.b | 12 | ||
104.h | odd | 2 | 1 | CM | 312.2.h.b | ✓ | 12 |
156.h | even | 2 | 1 | 1248.2.h.b | 12 | ||
312.b | odd | 2 | 1 | 1248.2.h.b | 12 | ||
312.h | even | 2 | 1 | inner | 312.2.h.b | ✓ | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
312.2.h.b | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
312.2.h.b | ✓ | 12 | 3.b | odd | 2 | 1 | inner |
312.2.h.b | ✓ | 12 | 8.d | odd | 2 | 1 | inner |
312.2.h.b | ✓ | 12 | 13.b | even | 2 | 1 | inner |
312.2.h.b | ✓ | 12 | 24.f | even | 2 | 1 | inner |
312.2.h.b | ✓ | 12 | 39.d | odd | 2 | 1 | inner |
312.2.h.b | ✓ | 12 | 104.h | odd | 2 | 1 | CM |
312.2.h.b | ✓ | 12 | 312.h | even | 2 | 1 | inner |
1248.2.h.b | 12 | 4.b | odd | 2 | 1 | ||
1248.2.h.b | 12 | 8.b | even | 2 | 1 | ||
1248.2.h.b | 12 | 12.b | even | 2 | 1 | ||
1248.2.h.b | 12 | 24.h | odd | 2 | 1 | ||
1248.2.h.b | 12 | 52.b | odd | 2 | 1 | ||
1248.2.h.b | 12 | 104.e | even | 2 | 1 | ||
1248.2.h.b | 12 | 156.h | even | 2 | 1 | ||
1248.2.h.b | 12 | 312.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .