Properties

Label 312.2.h.b
Level 312312
Weight 22
Character orbit 312.h
Analytic conductor 2.4912.491
Analytic rank 00
Dimension 1212
CM discriminant -104
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [312,2,Mod(155,312)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(312, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("312.155");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 312=23313 312 = 2^{3} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 312.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.491332543062.49133254306
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x1216x9+92x668x3+27 x^{12} - 16x^{9} + 92x^{6} - 68x^{3} + 27 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2632 2^{6}\cdot 3^{2}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q2+β7q32q4β9q5β4q6+(β8+β4)q72β3q8β2q9+(β7+β6β2)q102β7q12++(3β9+β8++7β3)q98+O(q100) q + \beta_{3} q^{2} + \beta_{7} q^{3} - 2 q^{4} - \beta_{9} q^{5} - \beta_{4} q^{6} + (\beta_{8} + \beta_{4}) q^{7} - 2 \beta_{3} q^{8} - \beta_{2} q^{9} + (\beta_{7} + \beta_{6} - \beta_{2}) q^{10} - 2 \beta_{7} q^{12}+ \cdots + (3 \beta_{9} + \beta_{8} + \cdots + 7 \beta_{3}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q24q4+48q1660q2512q27+24q3048q42+84q49+60q5196q6484q75+96q90+O(q100) 12 q - 24 q^{4} + 48 q^{16} - 60 q^{25} - 12 q^{27} + 24 q^{30} - 48 q^{42} + 84 q^{49} + 60 q^{51} - 96 q^{64} - 84 q^{75} + 96 q^{90}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x1216x9+92x668x3+27 x^{12} - 16x^{9} + 92x^{6} - 68x^{3} + 27 : Copy content Toggle raw display

β1\beta_{1}== (2ν921ν6+16ν3+372)/105 ( 2\nu^{9} - 21\nu^{6} + 16\nu^{3} + 372 ) / 105 Copy content Toggle raw display
β2\beta_{2}== (ν10+18ν7113ν4+144ν)/30 ( -\nu^{10} + 18\nu^{7} - 113\nu^{4} + 144\nu ) / 30 Copy content Toggle raw display
β3\beta_{3}== (3ν9+49ν6269ν3+107)/70 ( -3\nu^{9} + 49\nu^{6} - 269\nu^{3} + 107 ) / 70 Copy content Toggle raw display
β4\beta_{4}== (6ν1198ν8+573ν5529ν2)/105 ( 6\nu^{11} - 98\nu^{8} + 573\nu^{5} - 529\nu^{2} ) / 105 Copy content Toggle raw display
β5\beta_{5}== (40ν119ν10595ν8+147ν7+3050ν51017ν4+475ν2+2211ν)/630 ( 40\nu^{11} - 9\nu^{10} - 595\nu^{8} + 147\nu^{7} + 3050\nu^{5} - 1017\nu^{4} + 475\nu^{2} + 2211\nu ) / 630 Copy content Toggle raw display
β6\beta_{6}== (4ν116ν1067ν8+93ν7+422ν5498ν4521ν2+159ν)/90 ( 4\nu^{11} - 6\nu^{10} - 67\nu^{8} + 93\nu^{7} + 422\nu^{5} - 498\nu^{4} - 521\nu^{2} + 159\nu ) / 90 Copy content Toggle raw display
β7\beta_{7}== (2ν1131ν8+166ν523ν2)/30 ( 2\nu^{11} - 31\nu^{8} + 166\nu^{5} - 23\nu^{2} ) / 30 Copy content Toggle raw display
β8\beta_{8}== (40ν1142ν10595ν8+651ν7+3050ν53486ν4+475ν2147ν)/630 ( 40\nu^{11} - 42\nu^{10} - 595\nu^{8} + 651\nu^{7} + 3050\nu^{5} - 3486\nu^{4} + 475\nu^{2} - 147\nu ) / 630 Copy content Toggle raw display
β9\beta_{9}== (40ν11+51ν10595ν8798ν7+3050ν5+4503ν4+475ν22064ν)/630 ( 40\nu^{11} + 51\nu^{10} - 595\nu^{8} - 798\nu^{7} + 3050\nu^{5} + 4503\nu^{4} + 475\nu^{2} - 2064\nu ) / 630 Copy content Toggle raw display
β10\beta_{10}== (4ν1112ν10+67ν8+186ν7422ν5996ν4+521ν2+318ν)/90 ( -4\nu^{11} - 12\nu^{10} + 67\nu^{8} + 186\nu^{7} - 422\nu^{5} - 996\nu^{4} + 521\nu^{2} + 318\nu ) / 90 Copy content Toggle raw display
β11\beta_{11}== (ν915ν6+83ν333)/6 ( \nu^{9} - 15\nu^{6} + 83\nu^{3} - 33 ) / 6 Copy content Toggle raw display
ν\nu== (β10+β92β8+β6+β5)/6 ( \beta_{10} + \beta_{9} - 2\beta_{8} + \beta_{6} + \beta_{5} ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (β10β9β8+6β7+2β6β56β4)/6 ( -\beta_{10} - \beta_{9} - \beta_{8} + 6\beta_{7} + 2\beta_{6} - \beta_{5} - 6\beta_{4} ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (β11+3β32β1+8)/2 ( \beta_{11} + 3\beta_{3} - 2\beta _1 + 8 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (10β10+16β911β8+10β65β5+3β2)/6 ( 10\beta_{10} + 16\beta_{9} - 11\beta_{8} + 10\beta_{6} - 5\beta_{5} + 3\beta_{2} ) / 6 Copy content Toggle raw display
ν5\nu^{5}== (13β10β9β8+18β7+26β6β548β4)/6 ( -13\beta_{10} - \beta_{9} - \beta_{8} + 18\beta_{7} + 26\beta_{6} - \beta_{5} - 48\beta_{4} ) / 6 Copy content Toggle raw display
ν6\nu^{6}== 7β11+25β35β1+18 7\beta_{11} + 25\beta_{3} - 5\beta _1 + 18 Copy content Toggle raw display
ν7\nu^{7}== (61β10+145β938β8+61β6107β5+108β2)/6 ( 61\beta_{10} + 145\beta_{9} - 38\beta_{8} + 61\beta_{6} - 107\beta_{5} + 108\beta_{2} ) / 6 Copy content Toggle raw display
ν8\nu^{8}== (103β10+77β9+77β8174β7+206β6+77β5294β4)/6 ( -103\beta_{10} + 77\beta_{9} + 77\beta_{8} - 174\beta_{7} + 206\beta_{6} + 77\beta_{5} - 294\beta_{4} ) / 6 Copy content Toggle raw display
ν9\nu^{9}== (139β11+501β3+16β158)/2 ( 139\beta_{11} + 501\beta_{3} + 16\beta _1 - 58 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (112β10+946β9+271β8+112β61217β5+1425β2)/6 ( 112\beta_{10} + 946\beta_{9} + 271\beta_{8} + 112\beta_{6} - 1217\beta_{5} + 1425\beta_{2} ) / 6 Copy content Toggle raw display
ν11\nu^{11}== (529β10+1265β9+1265β84032β7+1058β6+1265β5642β4)/6 ( -529\beta_{10} + 1265\beta_{9} + 1265\beta_{8} - 4032\beta_{7} + 1058\beta_{6} + 1265\beta_{5} - 642\beta_{4} ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/312Z)×\left(\mathbb{Z}/312\mathbb{Z}\right)^\times.

nn 7979 145145 157157 209209
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
155.1
−0.205073 0.809425i
−1.34767 1.57689i
−0.691788 + 1.95556i
0.803519 + 0.227114i
−0.598446 + 0.582311i
2.03946 0.378672i
−1.34767 + 1.57689i
−0.205073 + 0.809425i
0.803519 0.227114i
−0.691788 1.95556i
2.03946 + 0.378672i
−0.598446 0.582311i
1.41421i −1.55274 0.767460i −2.00000 0.380805i −1.08535 + 2.19591i −2.28519 2.82843i 1.82201 + 2.38333i 0.538540
155.2 1.41421i −1.55274 + 0.767460i −2.00000 0.380805i 1.08535 + 2.19591i 2.28519 2.82843i 1.82201 2.38333i 0.538540
155.3 1.41421i 0.111731 1.72844i −2.00000 4.04932i −2.44439 0.158012i 2.99062 2.82843i −2.97503 0.386242i −5.72660
155.4 1.41421i 0.111731 + 1.72844i −2.00000 4.04932i 2.44439 0.158012i −2.99062 2.82843i −2.97503 + 0.386242i −5.72660
155.5 1.41421i 1.44101 0.960984i −2.00000 3.66851i −1.35904 2.03790i 5.27581 2.82843i 1.15302 2.76957i 5.18806
155.6 1.41421i 1.44101 + 0.960984i −2.00000 3.66851i 1.35904 2.03790i −5.27581 2.82843i 1.15302 + 2.76957i 5.18806
155.7 1.41421i −1.55274 0.767460i −2.00000 0.380805i 1.08535 2.19591i 2.28519 2.82843i 1.82201 + 2.38333i 0.538540
155.8 1.41421i −1.55274 + 0.767460i −2.00000 0.380805i −1.08535 2.19591i −2.28519 2.82843i 1.82201 2.38333i 0.538540
155.9 1.41421i 0.111731 1.72844i −2.00000 4.04932i 2.44439 + 0.158012i −2.99062 2.82843i −2.97503 0.386242i −5.72660
155.10 1.41421i 0.111731 + 1.72844i −2.00000 4.04932i −2.44439 + 0.158012i 2.99062 2.82843i −2.97503 + 0.386242i −5.72660
155.11 1.41421i 1.44101 0.960984i −2.00000 3.66851i 1.35904 + 2.03790i −5.27581 2.82843i 1.15302 2.76957i 5.18806
155.12 1.41421i 1.44101 + 0.960984i −2.00000 3.66851i −1.35904 + 2.03790i 5.27581 2.82843i 1.15302 + 2.76957i 5.18806
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 155.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by Q(26)\Q(\sqrt{-26})
3.b odd 2 1 inner
8.d odd 2 1 inner
13.b even 2 1 inner
24.f even 2 1 inner
39.d odd 2 1 inner
312.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.2.h.b 12
3.b odd 2 1 inner 312.2.h.b 12
4.b odd 2 1 1248.2.h.b 12
8.b even 2 1 1248.2.h.b 12
8.d odd 2 1 inner 312.2.h.b 12
12.b even 2 1 1248.2.h.b 12
13.b even 2 1 inner 312.2.h.b 12
24.f even 2 1 inner 312.2.h.b 12
24.h odd 2 1 1248.2.h.b 12
39.d odd 2 1 inner 312.2.h.b 12
52.b odd 2 1 1248.2.h.b 12
104.e even 2 1 1248.2.h.b 12
104.h odd 2 1 CM 312.2.h.b 12
156.h even 2 1 1248.2.h.b 12
312.b odd 2 1 1248.2.h.b 12
312.h even 2 1 inner 312.2.h.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.h.b 12 1.a even 1 1 trivial
312.2.h.b 12 3.b odd 2 1 inner
312.2.h.b 12 8.d odd 2 1 inner
312.2.h.b 12 13.b even 2 1 inner
312.2.h.b 12 24.f even 2 1 inner
312.2.h.b 12 39.d odd 2 1 inner
312.2.h.b 12 104.h odd 2 1 CM
312.2.h.b 12 312.h even 2 1 inner
1248.2.h.b 12 4.b odd 2 1
1248.2.h.b 12 8.b even 2 1
1248.2.h.b 12 12.b even 2 1
1248.2.h.b 12 24.h odd 2 1
1248.2.h.b 12 52.b odd 2 1
1248.2.h.b 12 104.e even 2 1
1248.2.h.b 12 156.h even 2 1
1248.2.h.b 12 312.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T56+30T54+225T52+32 T_{5}^{6} + 30T_{5}^{4} + 225T_{5}^{2} + 32 acting on S2new(312,[χ])S_{2}^{\mathrm{new}}(312, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2)6 (T^{2} + 2)^{6} Copy content Toggle raw display
33 (T6+2T3+27)2 (T^{6} + 2 T^{3} + 27)^{2} Copy content Toggle raw display
55 (T6+30T4++32)2 (T^{6} + 30 T^{4} + \cdots + 32)^{2} Copy content Toggle raw display
77 (T642T4+1300)2 (T^{6} - 42 T^{4} + \cdots - 1300)^{2} Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 (T213)6 (T^{2} - 13)^{6} Copy content Toggle raw display
1717 (T6+102T4++6656)2 (T^{6} + 102 T^{4} + \cdots + 6656)^{2} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 (T252)6 (T^{2} - 52)^{6} Copy content Toggle raw display
3737 (T6222T4+87412)2 (T^{6} - 222 T^{4} + \cdots - 87412)^{2} Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 (T3129T218)4 (T^{3} - 129 T - 218)^{4} Copy content Toggle raw display
4747 (T6+282T4++336200)2 (T^{6} + 282 T^{4} + \cdots + 336200)^{2} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T12 T^{12} Copy content Toggle raw display
6767 T12 T^{12} Copy content Toggle raw display
7171 (T6+426T4++397832)2 (T^{6} + 426 T^{4} + \cdots + 397832)^{2} Copy content Toggle raw display
7373 T12 T^{12} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12 T^{12} Copy content Toggle raw display
show more
show less