Properties

Label 4-312e2-1.1-c3e2-0-4
Degree $4$
Conductor $97344$
Sign $1$
Analytic cond. $338.876$
Root an. cond. $4.29052$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 18·5-s − 10·7-s + 27·9-s + 4·11-s + 26·13-s − 108·15-s − 52·17-s − 142·19-s − 60·21-s − 280·23-s + 10·25-s + 108·27-s − 424·29-s − 178·31-s + 24·33-s + 180·35-s + 136·37-s + 156·39-s − 226·41-s − 72·43-s − 486·45-s + 176·47-s − 186·49-s − 312·51-s − 788·53-s − 72·55-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.60·5-s − 0.539·7-s + 9-s + 0.109·11-s + 0.554·13-s − 1.85·15-s − 0.741·17-s − 1.71·19-s − 0.623·21-s − 2.53·23-s + 2/25·25-s + 0.769·27-s − 2.71·29-s − 1.03·31-s + 0.126·33-s + 0.869·35-s + 0.604·37-s + 0.640·39-s − 0.860·41-s − 0.255·43-s − 1.60·45-s + 0.546·47-s − 0.542·49-s − 0.856·51-s − 2.04·53-s − 0.176·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(338.876\)
Root analytic conductor: \(4.29052\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 97344,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p T )^{2} \)
13$C_1$ \( ( 1 - p T )^{2} \)
good5$D_{4}$ \( 1 + 18 T + 314 T^{2} + 18 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 10 T + 286 T^{2} + 10 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 4 T - 666 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 52 T + 8054 T^{2} + 52 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 142 T + 16702 T^{2} + 142 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 280 T + 41486 T^{2} + 280 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 424 T + 93110 T^{2} + 424 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 178 T + 48990 T^{2} + 178 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 136 T + 56358 T^{2} - 136 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 226 T + 144474 T^{2} + 226 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 72 T + 28662 T^{2} + 72 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 176 T - 29410 T^{2} - 176 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 788 T + 451902 T^{2} + 788 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 728 T + 542166 T^{2} - 728 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 736 T + 564838 T^{2} + 736 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 1054 T + 684622 T^{2} - 1054 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 660 T + 721294 T^{2} + 660 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 24 T - 59650 T^{2} - 24 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 40 T - 308514 T^{2} - 40 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1344 T + 1516550 T^{2} - 1344 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 314 T + 619250 T^{2} - 314 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 264 T + 1841070 T^{2} + 264 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83394782654989645206140862298, −10.79479718180286426519951884760, −9.930619319756160097953807829626, −9.472805026810281246778095833868, −9.147686717995460193798278020972, −8.486485898348483876344336995153, −7.985894070032192047860297427511, −7.965347053620023151782253387617, −7.32760487574813187890454752491, −6.72377644769637053377010965107, −6.17343318526163125708986232958, −5.63734182546104978125567275658, −4.46759038480210206541089976156, −4.14240725570613377864073640081, −3.60831962071639935710322882913, −3.45709916490424119660510429234, −2.00893613230940240624886554959, −2.00838632588726881683853527300, 0, 0, 2.00838632588726881683853527300, 2.00893613230940240624886554959, 3.45709916490424119660510429234, 3.60831962071639935710322882913, 4.14240725570613377864073640081, 4.46759038480210206541089976156, 5.63734182546104978125567275658, 6.17343318526163125708986232958, 6.72377644769637053377010965107, 7.32760487574813187890454752491, 7.965347053620023151782253387617, 7.985894070032192047860297427511, 8.486485898348483876344336995153, 9.147686717995460193798278020972, 9.472805026810281246778095833868, 9.930619319756160097953807829626, 10.79479718180286426519951884760, 10.83394782654989645206140862298

Graph of the $Z$-function along the critical line