L(s) = 1 | + 6·3-s − 18·5-s − 10·7-s + 27·9-s + 4·11-s + 26·13-s − 108·15-s − 52·17-s − 142·19-s − 60·21-s − 280·23-s + 10·25-s + 108·27-s − 424·29-s − 178·31-s + 24·33-s + 180·35-s + 136·37-s + 156·39-s − 226·41-s − 72·43-s − 486·45-s + 176·47-s − 186·49-s − 312·51-s − 788·53-s − 72·55-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 1.60·5-s − 0.539·7-s + 9-s + 0.109·11-s + 0.554·13-s − 1.85·15-s − 0.741·17-s − 1.71·19-s − 0.623·21-s − 2.53·23-s + 2/25·25-s + 0.769·27-s − 2.71·29-s − 1.03·31-s + 0.126·33-s + 0.869·35-s + 0.604·37-s + 0.640·39-s − 0.860·41-s − 0.255·43-s − 1.60·45-s + 0.546·47-s − 0.542·49-s − 0.856·51-s − 2.04·53-s − 0.176·55-s + ⋯ |
Λ(s)=(=(97344s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(97344s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
97344
= 26⋅32⋅132
|
Sign: |
1
|
Analytic conductor: |
338.876 |
Root analytic conductor: |
4.29052 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 97344, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−pT)2 |
| 13 | C1 | (1−pT)2 |
good | 5 | D4 | 1+18T+314T2+18p3T3+p6T4 |
| 7 | D4 | 1+10T+286T2+10p3T3+p6T4 |
| 11 | D4 | 1−4T−666T2−4p3T3+p6T4 |
| 17 | D4 | 1+52T+8054T2+52p3T3+p6T4 |
| 19 | D4 | 1+142T+16702T2+142p3T3+p6T4 |
| 23 | D4 | 1+280T+41486T2+280p3T3+p6T4 |
| 29 | D4 | 1+424T+93110T2+424p3T3+p6T4 |
| 31 | D4 | 1+178T+48990T2+178p3T3+p6T4 |
| 37 | D4 | 1−136T+56358T2−136p3T3+p6T4 |
| 41 | D4 | 1+226T+144474T2+226p3T3+p6T4 |
| 43 | D4 | 1+72T+28662T2+72p3T3+p6T4 |
| 47 | D4 | 1−176T−29410T2−176p3T3+p6T4 |
| 53 | D4 | 1+788T+451902T2+788p3T3+p6T4 |
| 59 | D4 | 1−728T+542166T2−728p3T3+p6T4 |
| 61 | D4 | 1+736T+564838T2+736p3T3+p6T4 |
| 67 | D4 | 1−1054T+684622T2−1054p3T3+p6T4 |
| 71 | D4 | 1+660T+721294T2+660p3T3+p6T4 |
| 73 | D4 | 1−24T−59650T2−24p3T3+p6T4 |
| 79 | D4 | 1−40T−308514T2−40p3T3+p6T4 |
| 83 | D4 | 1−1344T+1516550T2−1344p3T3+p6T4 |
| 89 | D4 | 1−314T+619250T2−314p3T3+p6T4 |
| 97 | D4 | 1+264T+1841070T2+264p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83394782654989645206140862298, −10.79479718180286426519951884760, −9.930619319756160097953807829626, −9.472805026810281246778095833868, −9.147686717995460193798278020972, −8.486485898348483876344336995153, −7.985894070032192047860297427511, −7.965347053620023151782253387617, −7.32760487574813187890454752491, −6.72377644769637053377010965107, −6.17343318526163125708986232958, −5.63734182546104978125567275658, −4.46759038480210206541089976156, −4.14240725570613377864073640081, −3.60831962071639935710322882913, −3.45709916490424119660510429234, −2.00893613230940240624886554959, −2.00838632588726881683853527300, 0, 0,
2.00838632588726881683853527300, 2.00893613230940240624886554959, 3.45709916490424119660510429234, 3.60831962071639935710322882913, 4.14240725570613377864073640081, 4.46759038480210206541089976156, 5.63734182546104978125567275658, 6.17343318526163125708986232958, 6.72377644769637053377010965107, 7.32760487574813187890454752491, 7.965347053620023151782253387617, 7.985894070032192047860297427511, 8.486485898348483876344336995153, 9.147686717995460193798278020972, 9.472805026810281246778095833868, 9.930619319756160097953807829626, 10.79479718180286426519951884760, 10.83394782654989645206140862298