L(s) = 1 | + 38.8·2-s + 996.·4-s + 625·5-s + 2.40e3·7-s + 1.88e4·8-s + 2.42e4·10-s − 6.97e3·11-s + 4.56e4·13-s + 9.32e4·14-s + 2.20e5·16-s + 1.54e5·17-s − 3.80e5·19-s + 6.22e5·20-s − 2.70e5·22-s + 1.66e6·23-s + 3.90e5·25-s + 1.77e6·26-s + 2.39e6·28-s + 2.23e6·29-s + 5.92e6·31-s − 1.06e6·32-s + 6.01e6·34-s + 1.50e6·35-s + 4.08e6·37-s − 1.47e7·38-s + 1.17e7·40-s − 1.62e6·41-s + ⋯ |
L(s) = 1 | + 1.71·2-s + 1.94·4-s + 0.447·5-s + 0.377·7-s + 1.62·8-s + 0.767·10-s − 0.143·11-s + 0.442·13-s + 0.648·14-s + 0.841·16-s + 0.449·17-s − 0.670·19-s + 0.870·20-s − 0.246·22-s + 1.24·23-s + 0.200·25-s + 0.760·26-s + 0.735·28-s + 0.586·29-s + 1.15·31-s − 0.180·32-s + 0.771·34-s + 0.169·35-s + 0.358·37-s − 1.15·38-s + 0.726·40-s − 0.0895·41-s + ⋯ |
Λ(s)=(=(315s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(315s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
8.807067523 |
L(21) |
≈ |
8.807067523 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−625T |
| 7 | 1−2.40e3T |
good | 2 | 1−38.8T+512T2 |
| 11 | 1+6.97e3T+2.35e9T2 |
| 13 | 1−4.56e4T+1.06e10T2 |
| 17 | 1−1.54e5T+1.18e11T2 |
| 19 | 1+3.80e5T+3.22e11T2 |
| 23 | 1−1.66e6T+1.80e12T2 |
| 29 | 1−2.23e6T+1.45e13T2 |
| 31 | 1−5.92e6T+2.64e13T2 |
| 37 | 1−4.08e6T+1.29e14T2 |
| 41 | 1+1.62e6T+3.27e14T2 |
| 43 | 1−2.61e7T+5.02e14T2 |
| 47 | 1−3.12e7T+1.11e15T2 |
| 53 | 1+8.31e7T+3.29e15T2 |
| 59 | 1−3.03e7T+8.66e15T2 |
| 61 | 1+1.10e8T+1.16e16T2 |
| 67 | 1+1.01e8T+2.72e16T2 |
| 71 | 1−3.91e8T+4.58e16T2 |
| 73 | 1−2.16e8T+5.88e16T2 |
| 79 | 1−1.00e8T+1.19e17T2 |
| 83 | 1−3.07e8T+1.86e17T2 |
| 89 | 1+2.71e8T+3.50e17T2 |
| 97 | 1+2.51e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54467868267063436405676907601, −9.195120008723961496640752713863, −7.965626980883915701642420089055, −6.77343651103215939858800134196, −6.01668921505784330015371331683, −5.08668982455218909441288772527, −4.31136069549469982418368994431, −3.16210359405961876123728902440, −2.28577097016992627238319050224, −1.05249568027173207308618487084,
1.05249568027173207308618487084, 2.28577097016992627238319050224, 3.16210359405961876123728902440, 4.31136069549469982418368994431, 5.08668982455218909441288772527, 6.01668921505784330015371331683, 6.77343651103215939858800134196, 7.965626980883915701642420089055, 9.195120008723961496640752713863, 10.54467868267063436405676907601