Properties

Label 315.10.a.e.1.4
Level $315$
Weight $10$
Character 315.1
Self dual yes
Analytic conductor $162.236$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [315,10,Mod(1,315)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(315, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("315.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 315.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.236288392\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1253x^{2} - 1039x + 42996 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(35.8379\) of defining polynomial
Character \(\chi\) \(=\) 315.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+38.8379 q^{2} +996.380 q^{4} +625.000 q^{5} +2401.00 q^{7} +18812.3 q^{8} +24273.7 q^{10} -6971.86 q^{11} +45601.2 q^{13} +93249.7 q^{14} +220483. q^{16} +154849. q^{17} -380792. q^{19} +622737. q^{20} -270772. q^{22} +1.66968e6 q^{23} +390625. q^{25} +1.77105e6 q^{26} +2.39231e6 q^{28} +2.23565e6 q^{29} +5.92992e6 q^{31} -1.06882e6 q^{32} +6.01401e6 q^{34} +1.50062e6 q^{35} +4.08925e6 q^{37} -1.47892e7 q^{38} +1.17577e7 q^{40} -1.62091e6 q^{41} +2.61736e7 q^{43} -6.94663e6 q^{44} +6.48468e7 q^{46} +3.12418e7 q^{47} +5.76480e6 q^{49} +1.51710e7 q^{50} +4.54361e7 q^{52} -8.31434e7 q^{53} -4.35742e6 q^{55} +4.51683e7 q^{56} +8.68279e7 q^{58} +3.03472e7 q^{59} -1.10999e8 q^{61} +2.30305e8 q^{62} -1.54398e8 q^{64} +2.85007e7 q^{65} -1.01836e8 q^{67} +1.54289e8 q^{68} +5.82811e7 q^{70} +3.91346e8 q^{71} +2.16261e8 q^{73} +1.58818e8 q^{74} -3.79414e8 q^{76} -1.67394e7 q^{77} +1.00652e8 q^{79} +1.37802e8 q^{80} -6.29525e7 q^{82} +3.07287e8 q^{83} +9.67807e7 q^{85} +1.01653e9 q^{86} -1.31157e8 q^{88} -2.71171e8 q^{89} +1.09488e8 q^{91} +1.66364e9 q^{92} +1.21337e9 q^{94} -2.37995e8 q^{95} -2.51010e8 q^{97} +2.23893e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 13 q^{2} + 501 q^{4} + 2500 q^{5} + 9604 q^{7} + 16263 q^{8} + 8125 q^{10} + 87062 q^{11} + 39494 q^{13} + 31213 q^{14} + 328849 q^{16} + 291756 q^{17} + 50482 q^{19} + 313125 q^{20} - 1003016 q^{22}+ \cdots + 74942413 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 38.8379 1.71641 0.858204 0.513309i \(-0.171581\pi\)
0.858204 + 0.513309i \(0.171581\pi\)
\(3\) 0 0
\(4\) 996.380 1.94605
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 18812.3 1.62382
\(9\) 0 0
\(10\) 24273.7 0.767601
\(11\) −6971.86 −0.143576 −0.0717880 0.997420i \(-0.522871\pi\)
−0.0717880 + 0.997420i \(0.522871\pi\)
\(12\) 0 0
\(13\) 45601.2 0.442824 0.221412 0.975180i \(-0.428933\pi\)
0.221412 + 0.975180i \(0.428933\pi\)
\(14\) 93249.7 0.648741
\(15\) 0 0
\(16\) 220483. 0.841074
\(17\) 154849. 0.449664 0.224832 0.974398i \(-0.427817\pi\)
0.224832 + 0.974398i \(0.427817\pi\)
\(18\) 0 0
\(19\) −380792. −0.670343 −0.335171 0.942157i \(-0.608794\pi\)
−0.335171 + 0.942157i \(0.608794\pi\)
\(20\) 622737. 0.870302
\(21\) 0 0
\(22\) −270772. −0.246435
\(23\) 1.66968e6 1.24411 0.622054 0.782974i \(-0.286298\pi\)
0.622054 + 0.782974i \(0.286298\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) 1.77105e6 0.760066
\(27\) 0 0
\(28\) 2.39231e6 0.735540
\(29\) 2.23565e6 0.586966 0.293483 0.955964i \(-0.405186\pi\)
0.293483 + 0.955964i \(0.405186\pi\)
\(30\) 0 0
\(31\) 5.92992e6 1.15324 0.576622 0.817011i \(-0.304370\pi\)
0.576622 + 0.817011i \(0.304370\pi\)
\(32\) −1.06882e6 −0.180190
\(33\) 0 0
\(34\) 6.01401e6 0.771807
\(35\) 1.50062e6 0.169031
\(36\) 0 0
\(37\) 4.08925e6 0.358703 0.179352 0.983785i \(-0.442600\pi\)
0.179352 + 0.983785i \(0.442600\pi\)
\(38\) −1.47892e7 −1.15058
\(39\) 0 0
\(40\) 1.17577e7 0.726192
\(41\) −1.62091e6 −0.0895840 −0.0447920 0.998996i \(-0.514263\pi\)
−0.0447920 + 0.998996i \(0.514263\pi\)
\(42\) 0 0
\(43\) 2.61736e7 1.16750 0.583749 0.811934i \(-0.301585\pi\)
0.583749 + 0.811934i \(0.301585\pi\)
\(44\) −6.94663e6 −0.279407
\(45\) 0 0
\(46\) 6.48468e7 2.13540
\(47\) 3.12418e7 0.933891 0.466945 0.884286i \(-0.345355\pi\)
0.466945 + 0.884286i \(0.345355\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 1.51710e7 0.343281
\(51\) 0 0
\(52\) 4.54361e7 0.861759
\(53\) −8.31434e7 −1.44739 −0.723696 0.690119i \(-0.757558\pi\)
−0.723696 + 0.690119i \(0.757558\pi\)
\(54\) 0 0
\(55\) −4.35742e6 −0.0642091
\(56\) 4.51683e7 0.613744
\(57\) 0 0
\(58\) 8.68279e7 1.00747
\(59\) 3.03472e7 0.326051 0.163025 0.986622i \(-0.447875\pi\)
0.163025 + 0.986622i \(0.447875\pi\)
\(60\) 0 0
\(61\) −1.10999e8 −1.02644 −0.513221 0.858256i \(-0.671548\pi\)
−0.513221 + 0.858256i \(0.671548\pi\)
\(62\) 2.30305e8 1.97944
\(63\) 0 0
\(64\) −1.54398e8 −1.15035
\(65\) 2.85007e7 0.198037
\(66\) 0 0
\(67\) −1.01836e8 −0.617400 −0.308700 0.951160i \(-0.599894\pi\)
−0.308700 + 0.951160i \(0.599894\pi\)
\(68\) 1.54289e8 0.875071
\(69\) 0 0
\(70\) 5.82811e7 0.290126
\(71\) 3.91346e8 1.82767 0.913837 0.406082i \(-0.133105\pi\)
0.913837 + 0.406082i \(0.133105\pi\)
\(72\) 0 0
\(73\) 2.16261e8 0.891304 0.445652 0.895206i \(-0.352972\pi\)
0.445652 + 0.895206i \(0.352972\pi\)
\(74\) 1.58818e8 0.615681
\(75\) 0 0
\(76\) −3.79414e8 −1.30452
\(77\) −1.67394e7 −0.0542666
\(78\) 0 0
\(79\) 1.00652e8 0.290738 0.145369 0.989377i \(-0.453563\pi\)
0.145369 + 0.989377i \(0.453563\pi\)
\(80\) 1.37802e8 0.376140
\(81\) 0 0
\(82\) −6.29525e7 −0.153763
\(83\) 3.07287e8 0.710710 0.355355 0.934731i \(-0.384360\pi\)
0.355355 + 0.934731i \(0.384360\pi\)
\(84\) 0 0
\(85\) 9.67807e7 0.201096
\(86\) 1.01653e9 2.00390
\(87\) 0 0
\(88\) −1.31157e8 −0.233141
\(89\) −2.71171e8 −0.458130 −0.229065 0.973411i \(-0.573567\pi\)
−0.229065 + 0.973411i \(0.573567\pi\)
\(90\) 0 0
\(91\) 1.09488e8 0.167372
\(92\) 1.66364e9 2.42110
\(93\) 0 0
\(94\) 1.21337e9 1.60294
\(95\) −2.37995e8 −0.299786
\(96\) 0 0
\(97\) −2.51010e8 −0.287885 −0.143942 0.989586i \(-0.545978\pi\)
−0.143942 + 0.989586i \(0.545978\pi\)
\(98\) 2.23893e8 0.245201
\(99\) 0 0
\(100\) 3.89211e8 0.389211
\(101\) 7.39084e8 0.706721 0.353360 0.935487i \(-0.385039\pi\)
0.353360 + 0.935487i \(0.385039\pi\)
\(102\) 0 0
\(103\) −2.34196e8 −0.205028 −0.102514 0.994732i \(-0.532689\pi\)
−0.102514 + 0.994732i \(0.532689\pi\)
\(104\) 8.57862e8 0.719064
\(105\) 0 0
\(106\) −3.22911e9 −2.48432
\(107\) 9.62581e8 0.709922 0.354961 0.934881i \(-0.384494\pi\)
0.354961 + 0.934881i \(0.384494\pi\)
\(108\) 0 0
\(109\) −1.80446e9 −1.22441 −0.612205 0.790699i \(-0.709717\pi\)
−0.612205 + 0.790699i \(0.709717\pi\)
\(110\) −1.69233e8 −0.110209
\(111\) 0 0
\(112\) 5.29378e8 0.317896
\(113\) 2.49288e8 0.143830 0.0719148 0.997411i \(-0.477089\pi\)
0.0719148 + 0.997411i \(0.477089\pi\)
\(114\) 0 0
\(115\) 1.04355e9 0.556382
\(116\) 2.22756e9 1.14227
\(117\) 0 0
\(118\) 1.17862e9 0.559636
\(119\) 3.71793e8 0.169957
\(120\) 0 0
\(121\) −2.30934e9 −0.979386
\(122\) −4.31096e9 −1.76179
\(123\) 0 0
\(124\) 5.90845e9 2.24428
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) 2.06763e9 0.705270 0.352635 0.935761i \(-0.385286\pi\)
0.352635 + 0.935761i \(0.385286\pi\)
\(128\) −5.44924e9 −1.79428
\(129\) 0 0
\(130\) 1.10691e9 0.339912
\(131\) −2.31344e8 −0.0686338 −0.0343169 0.999411i \(-0.510926\pi\)
−0.0343169 + 0.999411i \(0.510926\pi\)
\(132\) 0 0
\(133\) −9.14282e8 −0.253366
\(134\) −3.95511e9 −1.05971
\(135\) 0 0
\(136\) 2.91306e9 0.730172
\(137\) 4.04100e9 0.980046 0.490023 0.871709i \(-0.336988\pi\)
0.490023 + 0.871709i \(0.336988\pi\)
\(138\) 0 0
\(139\) −5.97793e9 −1.35827 −0.679133 0.734016i \(-0.737644\pi\)
−0.679133 + 0.734016i \(0.737644\pi\)
\(140\) 1.49519e9 0.328943
\(141\) 0 0
\(142\) 1.51991e10 3.13703
\(143\) −3.17925e8 −0.0635789
\(144\) 0 0
\(145\) 1.39728e9 0.262499
\(146\) 8.39913e9 1.52984
\(147\) 0 0
\(148\) 4.07444e9 0.698056
\(149\) 7.04279e9 1.17059 0.585297 0.810819i \(-0.300978\pi\)
0.585297 + 0.810819i \(0.300978\pi\)
\(150\) 0 0
\(151\) −1.00816e10 −1.57809 −0.789045 0.614336i \(-0.789424\pi\)
−0.789045 + 0.614336i \(0.789424\pi\)
\(152\) −7.16357e9 −1.08851
\(153\) 0 0
\(154\) −6.50124e8 −0.0931436
\(155\) 3.70620e9 0.515747
\(156\) 0 0
\(157\) 9.31829e9 1.22402 0.612009 0.790851i \(-0.290362\pi\)
0.612009 + 0.790851i \(0.290362\pi\)
\(158\) 3.90912e9 0.499025
\(159\) 0 0
\(160\) −6.68012e8 −0.0805832
\(161\) 4.00890e9 0.470228
\(162\) 0 0
\(163\) 4.38753e9 0.486828 0.243414 0.969922i \(-0.421733\pi\)
0.243414 + 0.969922i \(0.421733\pi\)
\(164\) −1.61504e9 −0.174335
\(165\) 0 0
\(166\) 1.19344e10 1.21987
\(167\) 1.22903e10 1.22275 0.611377 0.791339i \(-0.290616\pi\)
0.611377 + 0.791339i \(0.290616\pi\)
\(168\) 0 0
\(169\) −8.52503e9 −0.803907
\(170\) 3.75875e9 0.345163
\(171\) 0 0
\(172\) 2.60789e10 2.27201
\(173\) 1.03424e10 0.877838 0.438919 0.898527i \(-0.355362\pi\)
0.438919 + 0.898527i \(0.355362\pi\)
\(174\) 0 0
\(175\) 9.37891e8 0.0755929
\(176\) −1.53717e9 −0.120758
\(177\) 0 0
\(178\) −1.05317e10 −0.786337
\(179\) 8.58820e9 0.625264 0.312632 0.949874i \(-0.398789\pi\)
0.312632 + 0.949874i \(0.398789\pi\)
\(180\) 0 0
\(181\) −8.83994e9 −0.612203 −0.306102 0.951999i \(-0.599025\pi\)
−0.306102 + 0.951999i \(0.599025\pi\)
\(182\) 4.25230e9 0.287278
\(183\) 0 0
\(184\) 3.14105e10 2.02020
\(185\) 2.55578e9 0.160417
\(186\) 0 0
\(187\) −1.07959e9 −0.0645610
\(188\) 3.11287e10 1.81740
\(189\) 0 0
\(190\) −9.24323e9 −0.514556
\(191\) −7.26678e9 −0.395086 −0.197543 0.980294i \(-0.563296\pi\)
−0.197543 + 0.980294i \(0.563296\pi\)
\(192\) 0 0
\(193\) 2.35437e9 0.122143 0.0610713 0.998133i \(-0.480548\pi\)
0.0610713 + 0.998133i \(0.480548\pi\)
\(194\) −9.74870e9 −0.494127
\(195\) 0 0
\(196\) 5.74393e9 0.278008
\(197\) −6.99832e9 −0.331052 −0.165526 0.986205i \(-0.552932\pi\)
−0.165526 + 0.986205i \(0.552932\pi\)
\(198\) 0 0
\(199\) 1.92323e10 0.869347 0.434674 0.900588i \(-0.356864\pi\)
0.434674 + 0.900588i \(0.356864\pi\)
\(200\) 7.34855e9 0.324763
\(201\) 0 0
\(202\) 2.87045e10 1.21302
\(203\) 5.36780e9 0.221852
\(204\) 0 0
\(205\) −1.01307e9 −0.0400632
\(206\) −9.09569e9 −0.351911
\(207\) 0 0
\(208\) 1.00543e10 0.372448
\(209\) 2.65483e9 0.0962452
\(210\) 0 0
\(211\) −4.79906e9 −0.166680 −0.0833402 0.996521i \(-0.526559\pi\)
−0.0833402 + 0.996521i \(0.526559\pi\)
\(212\) −8.28424e10 −2.81670
\(213\) 0 0
\(214\) 3.73846e10 1.21851
\(215\) 1.63585e10 0.522121
\(216\) 0 0
\(217\) 1.42377e10 0.435885
\(218\) −7.00812e10 −2.10159
\(219\) 0 0
\(220\) −4.34164e9 −0.124954
\(221\) 7.06130e9 0.199122
\(222\) 0 0
\(223\) −4.10110e10 −1.11053 −0.555263 0.831675i \(-0.687382\pi\)
−0.555263 + 0.831675i \(0.687382\pi\)
\(224\) −2.56624e9 −0.0681052
\(225\) 0 0
\(226\) 9.68182e9 0.246870
\(227\) −7.44961e10 −1.86216 −0.931081 0.364813i \(-0.881133\pi\)
−0.931081 + 0.364813i \(0.881133\pi\)
\(228\) 0 0
\(229\) 4.45316e10 1.07006 0.535031 0.844833i \(-0.320300\pi\)
0.535031 + 0.844833i \(0.320300\pi\)
\(230\) 4.05293e10 0.954978
\(231\) 0 0
\(232\) 4.20577e10 0.953124
\(233\) −3.18512e10 −0.707986 −0.353993 0.935248i \(-0.615176\pi\)
−0.353993 + 0.935248i \(0.615176\pi\)
\(234\) 0 0
\(235\) 1.95261e10 0.417649
\(236\) 3.02374e10 0.634512
\(237\) 0 0
\(238\) 1.44396e10 0.291716
\(239\) −6.19905e10 −1.22895 −0.614476 0.788936i \(-0.710632\pi\)
−0.614476 + 0.788936i \(0.710632\pi\)
\(240\) 0 0
\(241\) −8.58415e10 −1.63916 −0.819579 0.572967i \(-0.805792\pi\)
−0.819579 + 0.572967i \(0.805792\pi\)
\(242\) −8.96899e10 −1.68103
\(243\) 0 0
\(244\) −1.10597e11 −1.99751
\(245\) 3.60300e9 0.0638877
\(246\) 0 0
\(247\) −1.73646e10 −0.296844
\(248\) 1.11555e11 1.87266
\(249\) 0 0
\(250\) 9.48190e9 0.153520
\(251\) 7.93380e10 1.26168 0.630840 0.775913i \(-0.282710\pi\)
0.630840 + 0.775913i \(0.282710\pi\)
\(252\) 0 0
\(253\) −1.16408e10 −0.178624
\(254\) 8.03022e10 1.21053
\(255\) 0 0
\(256\) −1.32585e11 −1.92937
\(257\) 6.33351e10 0.905619 0.452809 0.891607i \(-0.350422\pi\)
0.452809 + 0.891607i \(0.350422\pi\)
\(258\) 0 0
\(259\) 9.81828e9 0.135577
\(260\) 2.83976e10 0.385390
\(261\) 0 0
\(262\) −8.98492e9 −0.117804
\(263\) −1.19647e11 −1.54206 −0.771028 0.636801i \(-0.780257\pi\)
−0.771028 + 0.636801i \(0.780257\pi\)
\(264\) 0 0
\(265\) −5.19646e10 −0.647294
\(266\) −3.55088e10 −0.434879
\(267\) 0 0
\(268\) −1.01468e11 −1.20149
\(269\) 1.41728e11 1.65033 0.825166 0.564891i \(-0.191082\pi\)
0.825166 + 0.564891i \(0.191082\pi\)
\(270\) 0 0
\(271\) −3.59020e10 −0.404349 −0.202174 0.979350i \(-0.564801\pi\)
−0.202174 + 0.979350i \(0.564801\pi\)
\(272\) 3.41415e10 0.378201
\(273\) 0 0
\(274\) 1.56944e11 1.68216
\(275\) −2.72338e9 −0.0287152
\(276\) 0 0
\(277\) −1.20184e11 −1.22656 −0.613278 0.789867i \(-0.710150\pi\)
−0.613278 + 0.789867i \(0.710150\pi\)
\(278\) −2.32170e11 −2.33134
\(279\) 0 0
\(280\) 2.82302e10 0.274475
\(281\) −1.34904e11 −1.29077 −0.645383 0.763859i \(-0.723302\pi\)
−0.645383 + 0.763859i \(0.723302\pi\)
\(282\) 0 0
\(283\) −6.33817e9 −0.0587388 −0.0293694 0.999569i \(-0.509350\pi\)
−0.0293694 + 0.999569i \(0.509350\pi\)
\(284\) 3.89930e11 3.55675
\(285\) 0 0
\(286\) −1.23475e10 −0.109127
\(287\) −3.89180e9 −0.0338596
\(288\) 0 0
\(289\) −9.46096e10 −0.797802
\(290\) 5.42674e10 0.450556
\(291\) 0 0
\(292\) 2.15478e11 1.73453
\(293\) −2.64542e10 −0.209696 −0.104848 0.994488i \(-0.533436\pi\)
−0.104848 + 0.994488i \(0.533436\pi\)
\(294\) 0 0
\(295\) 1.89670e10 0.145814
\(296\) 7.69280e10 0.582468
\(297\) 0 0
\(298\) 2.73527e11 2.00922
\(299\) 7.61394e10 0.550920
\(300\) 0 0
\(301\) 6.28429e10 0.441273
\(302\) −3.91546e11 −2.70864
\(303\) 0 0
\(304\) −8.39581e10 −0.563808
\(305\) −6.93743e10 −0.459039
\(306\) 0 0
\(307\) −1.05442e11 −0.677473 −0.338737 0.940881i \(-0.610000\pi\)
−0.338737 + 0.940881i \(0.610000\pi\)
\(308\) −1.66788e10 −0.105606
\(309\) 0 0
\(310\) 1.43941e11 0.885231
\(311\) −4.94542e10 −0.299765 −0.149883 0.988704i \(-0.547890\pi\)
−0.149883 + 0.988704i \(0.547890\pi\)
\(312\) 0 0
\(313\) 2.25492e11 1.32795 0.663975 0.747755i \(-0.268868\pi\)
0.663975 + 0.747755i \(0.268868\pi\)
\(314\) 3.61902e11 2.10091
\(315\) 0 0
\(316\) 1.00288e11 0.565792
\(317\) 2.28187e10 0.126919 0.0634593 0.997984i \(-0.479787\pi\)
0.0634593 + 0.997984i \(0.479787\pi\)
\(318\) 0 0
\(319\) −1.55867e10 −0.0842742
\(320\) −9.64986e10 −0.514453
\(321\) 0 0
\(322\) 1.55697e11 0.807104
\(323\) −5.89653e10 −0.301429
\(324\) 0 0
\(325\) 1.78130e10 0.0885648
\(326\) 1.70402e11 0.835595
\(327\) 0 0
\(328\) −3.04929e10 −0.145468
\(329\) 7.50116e10 0.352977
\(330\) 0 0
\(331\) −3.79965e11 −1.73987 −0.869937 0.493163i \(-0.835841\pi\)
−0.869937 + 0.493163i \(0.835841\pi\)
\(332\) 3.06174e11 1.38308
\(333\) 0 0
\(334\) 4.77330e11 2.09874
\(335\) −6.36477e10 −0.276110
\(336\) 0 0
\(337\) 9.46687e10 0.399827 0.199913 0.979814i \(-0.435934\pi\)
0.199913 + 0.979814i \(0.435934\pi\)
\(338\) −3.31094e11 −1.37983
\(339\) 0 0
\(340\) 9.64303e10 0.391344
\(341\) −4.13426e10 −0.165578
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 4.92386e11 1.89580
\(345\) 0 0
\(346\) 4.01677e11 1.50673
\(347\) 1.00957e11 0.373812 0.186906 0.982378i \(-0.440154\pi\)
0.186906 + 0.982378i \(0.440154\pi\)
\(348\) 0 0
\(349\) 6.18343e10 0.223108 0.111554 0.993758i \(-0.464417\pi\)
0.111554 + 0.993758i \(0.464417\pi\)
\(350\) 3.64257e10 0.129748
\(351\) 0 0
\(352\) 7.45167e9 0.0258709
\(353\) 1.91858e11 0.657647 0.328823 0.944391i \(-0.393348\pi\)
0.328823 + 0.944391i \(0.393348\pi\)
\(354\) 0 0
\(355\) 2.44591e11 0.817360
\(356\) −2.70189e11 −0.891545
\(357\) 0 0
\(358\) 3.33547e11 1.07321
\(359\) −4.76805e11 −1.51501 −0.757505 0.652830i \(-0.773582\pi\)
−0.757505 + 0.652830i \(0.773582\pi\)
\(360\) 0 0
\(361\) −1.77685e11 −0.550640
\(362\) −3.43324e11 −1.05079
\(363\) 0 0
\(364\) 1.09092e11 0.325714
\(365\) 1.35163e11 0.398603
\(366\) 0 0
\(367\) 2.22747e11 0.640935 0.320467 0.947260i \(-0.396160\pi\)
0.320467 + 0.947260i \(0.396160\pi\)
\(368\) 3.68135e11 1.04639
\(369\) 0 0
\(370\) 9.92610e10 0.275341
\(371\) −1.99627e11 −0.547063
\(372\) 0 0
\(373\) −1.57925e11 −0.422437 −0.211219 0.977439i \(-0.567743\pi\)
−0.211219 + 0.977439i \(0.567743\pi\)
\(374\) −4.19288e10 −0.110813
\(375\) 0 0
\(376\) 5.87730e11 1.51647
\(377\) 1.01948e11 0.259923
\(378\) 0 0
\(379\) 3.54764e11 0.883208 0.441604 0.897210i \(-0.354410\pi\)
0.441604 + 0.897210i \(0.354410\pi\)
\(380\) −2.37134e11 −0.583401
\(381\) 0 0
\(382\) −2.82226e11 −0.678129
\(383\) −9.78887e9 −0.0232455 −0.0116227 0.999932i \(-0.503700\pi\)
−0.0116227 + 0.999932i \(0.503700\pi\)
\(384\) 0 0
\(385\) −1.04622e10 −0.0242688
\(386\) 9.14388e10 0.209646
\(387\) 0 0
\(388\) −2.50102e11 −0.560239
\(389\) 5.83029e11 1.29097 0.645487 0.763772i \(-0.276655\pi\)
0.645487 + 0.763772i \(0.276655\pi\)
\(390\) 0 0
\(391\) 2.58548e11 0.559431
\(392\) 1.08449e11 0.231974
\(393\) 0 0
\(394\) −2.71800e11 −0.568219
\(395\) 6.29077e10 0.130022
\(396\) 0 0
\(397\) −3.67206e11 −0.741911 −0.370956 0.928651i \(-0.620970\pi\)
−0.370956 + 0.928651i \(0.620970\pi\)
\(398\) 7.46943e11 1.49215
\(399\) 0 0
\(400\) 8.61260e10 0.168215
\(401\) −9.04311e11 −1.74650 −0.873249 0.487274i \(-0.837991\pi\)
−0.873249 + 0.487274i \(0.837991\pi\)
\(402\) 0 0
\(403\) 2.70411e11 0.510684
\(404\) 7.36409e11 1.37532
\(405\) 0 0
\(406\) 2.08474e11 0.380789
\(407\) −2.85097e10 −0.0515012
\(408\) 0 0
\(409\) 5.60857e11 0.991053 0.495527 0.868593i \(-0.334975\pi\)
0.495527 + 0.868593i \(0.334975\pi\)
\(410\) −3.93453e10 −0.0687648
\(411\) 0 0
\(412\) −2.33349e11 −0.398995
\(413\) 7.28637e10 0.123236
\(414\) 0 0
\(415\) 1.92054e11 0.317839
\(416\) −4.87394e10 −0.0797922
\(417\) 0 0
\(418\) 1.03108e11 0.165196
\(419\) 1.01774e11 0.161314 0.0806571 0.996742i \(-0.474298\pi\)
0.0806571 + 0.996742i \(0.474298\pi\)
\(420\) 0 0
\(421\) −1.29266e11 −0.200546 −0.100273 0.994960i \(-0.531972\pi\)
−0.100273 + 0.994960i \(0.531972\pi\)
\(422\) −1.86385e11 −0.286092
\(423\) 0 0
\(424\) −1.56412e12 −2.35030
\(425\) 6.04879e10 0.0899329
\(426\) 0 0
\(427\) −2.66508e11 −0.387959
\(428\) 9.59097e11 1.38155
\(429\) 0 0
\(430\) 6.35330e11 0.896172
\(431\) 5.12625e11 0.715570 0.357785 0.933804i \(-0.383532\pi\)
0.357785 + 0.933804i \(0.383532\pi\)
\(432\) 0 0
\(433\) −1.29131e12 −1.76537 −0.882685 0.469964i \(-0.844267\pi\)
−0.882685 + 0.469964i \(0.844267\pi\)
\(434\) 5.52964e11 0.748157
\(435\) 0 0
\(436\) −1.79792e12 −2.38277
\(437\) −6.35801e11 −0.833979
\(438\) 0 0
\(439\) −1.36592e12 −1.75523 −0.877615 0.479367i \(-0.840866\pi\)
−0.877615 + 0.479367i \(0.840866\pi\)
\(440\) −8.19729e10 −0.104264
\(441\) 0 0
\(442\) 2.74246e11 0.341775
\(443\) −2.42875e11 −0.299617 −0.149808 0.988715i \(-0.547866\pi\)
−0.149808 + 0.988715i \(0.547866\pi\)
\(444\) 0 0
\(445\) −1.69482e11 −0.204882
\(446\) −1.59278e12 −1.90611
\(447\) 0 0
\(448\) −3.70709e11 −0.434792
\(449\) 8.03565e11 0.933067 0.466533 0.884504i \(-0.345503\pi\)
0.466533 + 0.884504i \(0.345503\pi\)
\(450\) 0 0
\(451\) 1.13007e10 0.0128621
\(452\) 2.48386e11 0.279900
\(453\) 0 0
\(454\) −2.89327e12 −3.19623
\(455\) 6.84303e10 0.0748509
\(456\) 0 0
\(457\) −1.30176e12 −1.39607 −0.698037 0.716062i \(-0.745943\pi\)
−0.698037 + 0.716062i \(0.745943\pi\)
\(458\) 1.72951e12 1.83666
\(459\) 0 0
\(460\) 1.03977e12 1.08275
\(461\) −1.57807e12 −1.62732 −0.813661 0.581340i \(-0.802529\pi\)
−0.813661 + 0.581340i \(0.802529\pi\)
\(462\) 0 0
\(463\) −9.58693e11 −0.969539 −0.484769 0.874642i \(-0.661096\pi\)
−0.484769 + 0.874642i \(0.661096\pi\)
\(464\) 4.92922e11 0.493682
\(465\) 0 0
\(466\) −1.23703e12 −1.21519
\(467\) 3.07820e11 0.299482 0.149741 0.988725i \(-0.452156\pi\)
0.149741 + 0.988725i \(0.452156\pi\)
\(468\) 0 0
\(469\) −2.44509e11 −0.233355
\(470\) 7.58354e11 0.716855
\(471\) 0 0
\(472\) 5.70901e11 0.529446
\(473\) −1.82479e11 −0.167625
\(474\) 0 0
\(475\) −1.48747e11 −0.134069
\(476\) 3.70447e11 0.330746
\(477\) 0 0
\(478\) −2.40758e12 −2.10938
\(479\) −1.13441e12 −0.984598 −0.492299 0.870426i \(-0.663843\pi\)
−0.492299 + 0.870426i \(0.663843\pi\)
\(480\) 0 0
\(481\) 1.86474e11 0.158842
\(482\) −3.33390e12 −2.81346
\(483\) 0 0
\(484\) −2.30098e12 −1.90594
\(485\) −1.56881e11 −0.128746
\(486\) 0 0
\(487\) 4.63079e11 0.373057 0.186528 0.982450i \(-0.440276\pi\)
0.186528 + 0.982450i \(0.440276\pi\)
\(488\) −2.08814e12 −1.66675
\(489\) 0 0
\(490\) 1.39933e11 0.109657
\(491\) −7.03123e11 −0.545965 −0.272982 0.962019i \(-0.588010\pi\)
−0.272982 + 0.962019i \(0.588010\pi\)
\(492\) 0 0
\(493\) 3.46188e11 0.263938
\(494\) −6.74403e11 −0.509505
\(495\) 0 0
\(496\) 1.30744e12 0.969964
\(497\) 9.39622e11 0.690796
\(498\) 0 0
\(499\) −1.64409e12 −1.18706 −0.593532 0.804810i \(-0.702267\pi\)
−0.593532 + 0.804810i \(0.702267\pi\)
\(500\) 2.43257e11 0.174060
\(501\) 0 0
\(502\) 3.08132e12 2.16556
\(503\) 6.66858e11 0.464491 0.232246 0.972657i \(-0.425393\pi\)
0.232246 + 0.972657i \(0.425393\pi\)
\(504\) 0 0
\(505\) 4.61928e11 0.316055
\(506\) −4.52103e11 −0.306592
\(507\) 0 0
\(508\) 2.06014e12 1.37249
\(509\) −2.71000e12 −1.78953 −0.894766 0.446536i \(-0.852657\pi\)
−0.894766 + 0.446536i \(0.852657\pi\)
\(510\) 0 0
\(511\) 5.19243e11 0.336881
\(512\) −2.35932e12 −1.51730
\(513\) 0 0
\(514\) 2.45980e12 1.55441
\(515\) −1.46373e11 −0.0916912
\(516\) 0 0
\(517\) −2.17814e11 −0.134084
\(518\) 3.81321e11 0.232706
\(519\) 0 0
\(520\) 5.36164e11 0.321575
\(521\) 2.09535e12 1.24591 0.622956 0.782257i \(-0.285932\pi\)
0.622956 + 0.782257i \(0.285932\pi\)
\(522\) 0 0
\(523\) 1.14725e12 0.670505 0.335253 0.942128i \(-0.391178\pi\)
0.335253 + 0.942128i \(0.391178\pi\)
\(524\) −2.30507e11 −0.133565
\(525\) 0 0
\(526\) −4.64683e12 −2.64680
\(527\) 9.18243e11 0.518573
\(528\) 0 0
\(529\) 9.86678e11 0.547804
\(530\) −2.01820e12 −1.11102
\(531\) 0 0
\(532\) −9.10973e11 −0.493064
\(533\) −7.39152e10 −0.0396699
\(534\) 0 0
\(535\) 6.01613e11 0.317487
\(536\) −1.91578e12 −1.00254
\(537\) 0 0
\(538\) 5.50442e12 2.83264
\(539\) −4.01914e10 −0.0205109
\(540\) 0 0
\(541\) −1.34131e12 −0.673196 −0.336598 0.941648i \(-0.609276\pi\)
−0.336598 + 0.941648i \(0.609276\pi\)
\(542\) −1.39436e12 −0.694028
\(543\) 0 0
\(544\) −1.65506e11 −0.0810248
\(545\) −1.12778e12 −0.547573
\(546\) 0 0
\(547\) 2.40564e12 1.14891 0.574457 0.818535i \(-0.305213\pi\)
0.574457 + 0.818535i \(0.305213\pi\)
\(548\) 4.02637e12 1.90722
\(549\) 0 0
\(550\) −1.05770e11 −0.0492870
\(551\) −8.51319e11 −0.393469
\(552\) 0 0
\(553\) 2.41666e11 0.109889
\(554\) −4.66769e12 −2.10527
\(555\) 0 0
\(556\) −5.95629e12 −2.64326
\(557\) −1.37511e12 −0.605328 −0.302664 0.953097i \(-0.597876\pi\)
−0.302664 + 0.953097i \(0.597876\pi\)
\(558\) 0 0
\(559\) 1.19355e12 0.516996
\(560\) 3.30862e11 0.142167
\(561\) 0 0
\(562\) −5.23940e12 −2.21548
\(563\) 6.09186e11 0.255542 0.127771 0.991804i \(-0.459218\pi\)
0.127771 + 0.991804i \(0.459218\pi\)
\(564\) 0 0
\(565\) 1.55805e11 0.0643226
\(566\) −2.46161e11 −0.100820
\(567\) 0 0
\(568\) 7.36212e12 2.96780
\(569\) −2.05650e12 −0.822477 −0.411238 0.911528i \(-0.634904\pi\)
−0.411238 + 0.911528i \(0.634904\pi\)
\(570\) 0 0
\(571\) −2.06365e12 −0.812408 −0.406204 0.913782i \(-0.633148\pi\)
−0.406204 + 0.913782i \(0.633148\pi\)
\(572\) −3.16774e11 −0.123728
\(573\) 0 0
\(574\) −1.51149e11 −0.0581168
\(575\) 6.52219e11 0.248822
\(576\) 0 0
\(577\) −5.64677e11 −0.212084 −0.106042 0.994362i \(-0.533818\pi\)
−0.106042 + 0.994362i \(0.533818\pi\)
\(578\) −3.67444e12 −1.36935
\(579\) 0 0
\(580\) 1.39222e12 0.510838
\(581\) 7.37795e11 0.268623
\(582\) 0 0
\(583\) 5.79664e11 0.207811
\(584\) 4.06837e12 1.44731
\(585\) 0 0
\(586\) −1.02742e12 −0.359924
\(587\) −2.31562e12 −0.805001 −0.402501 0.915420i \(-0.631859\pi\)
−0.402501 + 0.915420i \(0.631859\pi\)
\(588\) 0 0
\(589\) −2.25807e12 −0.773069
\(590\) 7.36638e11 0.250277
\(591\) 0 0
\(592\) 9.01607e11 0.301696
\(593\) 4.63777e12 1.54015 0.770075 0.637953i \(-0.220219\pi\)
0.770075 + 0.637953i \(0.220219\pi\)
\(594\) 0 0
\(595\) 2.32370e11 0.0760071
\(596\) 7.01729e12 2.27804
\(597\) 0 0
\(598\) 2.95709e12 0.945604
\(599\) −5.43529e12 −1.72505 −0.862525 0.506014i \(-0.831118\pi\)
−0.862525 + 0.506014i \(0.831118\pi\)
\(600\) 0 0
\(601\) 3.29328e12 1.02966 0.514830 0.857292i \(-0.327855\pi\)
0.514830 + 0.857292i \(0.327855\pi\)
\(602\) 2.44068e12 0.757403
\(603\) 0 0
\(604\) −1.00451e13 −3.07105
\(605\) −1.44334e12 −0.437995
\(606\) 0 0
\(607\) −6.38098e12 −1.90782 −0.953911 0.300089i \(-0.902984\pi\)
−0.953911 + 0.300089i \(0.902984\pi\)
\(608\) 4.06998e11 0.120789
\(609\) 0 0
\(610\) −2.69435e12 −0.787898
\(611\) 1.42466e12 0.413549
\(612\) 0 0
\(613\) −2.75511e11 −0.0788075 −0.0394037 0.999223i \(-0.512546\pi\)
−0.0394037 + 0.999223i \(0.512546\pi\)
\(614\) −4.09515e12 −1.16282
\(615\) 0 0
\(616\) −3.14907e11 −0.0881190
\(617\) −4.64493e12 −1.29031 −0.645157 0.764050i \(-0.723208\pi\)
−0.645157 + 0.764050i \(0.723208\pi\)
\(618\) 0 0
\(619\) 3.81630e12 1.04480 0.522401 0.852700i \(-0.325036\pi\)
0.522401 + 0.852700i \(0.325036\pi\)
\(620\) 3.69278e12 1.00367
\(621\) 0 0
\(622\) −1.92070e12 −0.514519
\(623\) −6.51082e11 −0.173157
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 8.75763e12 2.27930
\(627\) 0 0
\(628\) 9.28455e12 2.38200
\(629\) 6.33216e11 0.161296
\(630\) 0 0
\(631\) −7.70753e12 −1.93546 −0.967728 0.251997i \(-0.918913\pi\)
−0.967728 + 0.251997i \(0.918913\pi\)
\(632\) 1.89350e12 0.472105
\(633\) 0 0
\(634\) 8.86231e11 0.217844
\(635\) 1.29227e12 0.315406
\(636\) 0 0
\(637\) 2.62882e11 0.0632605
\(638\) −6.05352e11 −0.144649
\(639\) 0 0
\(640\) −3.40578e12 −0.802428
\(641\) −5.61631e12 −1.31398 −0.656992 0.753898i \(-0.728171\pi\)
−0.656992 + 0.753898i \(0.728171\pi\)
\(642\) 0 0
\(643\) 8.17255e12 1.88542 0.942710 0.333613i \(-0.108268\pi\)
0.942710 + 0.333613i \(0.108268\pi\)
\(644\) 3.99439e12 0.915090
\(645\) 0 0
\(646\) −2.29009e12 −0.517376
\(647\) −1.11023e12 −0.249083 −0.124541 0.992214i \(-0.539746\pi\)
−0.124541 + 0.992214i \(0.539746\pi\)
\(648\) 0 0
\(649\) −2.11577e11 −0.0468130
\(650\) 6.91817e11 0.152013
\(651\) 0 0
\(652\) 4.37164e12 0.947394
\(653\) 7.67144e11 0.165108 0.0825539 0.996587i \(-0.473692\pi\)
0.0825539 + 0.996587i \(0.473692\pi\)
\(654\) 0 0
\(655\) −1.44590e11 −0.0306940
\(656\) −3.57381e11 −0.0753468
\(657\) 0 0
\(658\) 2.91329e12 0.605853
\(659\) −6.50728e12 −1.34405 −0.672024 0.740529i \(-0.734575\pi\)
−0.672024 + 0.740529i \(0.734575\pi\)
\(660\) 0 0
\(661\) −2.96745e12 −0.604613 −0.302306 0.953211i \(-0.597757\pi\)
−0.302306 + 0.953211i \(0.597757\pi\)
\(662\) −1.47570e13 −2.98633
\(663\) 0 0
\(664\) 5.78076e12 1.15406
\(665\) −5.71427e11 −0.113309
\(666\) 0 0
\(667\) 3.73282e12 0.730249
\(668\) 1.22458e13 2.37955
\(669\) 0 0
\(670\) −2.47194e12 −0.473916
\(671\) 7.73869e11 0.147372
\(672\) 0 0
\(673\) 5.01760e12 0.942818 0.471409 0.881915i \(-0.343746\pi\)
0.471409 + 0.881915i \(0.343746\pi\)
\(674\) 3.67673e12 0.686265
\(675\) 0 0
\(676\) −8.49417e12 −1.56445
\(677\) −6.45425e11 −0.118086 −0.0590428 0.998255i \(-0.518805\pi\)
−0.0590428 + 0.998255i \(0.518805\pi\)
\(678\) 0 0
\(679\) −6.02676e11 −0.108810
\(680\) 1.82067e12 0.326543
\(681\) 0 0
\(682\) −1.60566e12 −0.284200
\(683\) 8.16738e12 1.43612 0.718058 0.695983i \(-0.245031\pi\)
0.718058 + 0.695983i \(0.245031\pi\)
\(684\) 0 0
\(685\) 2.52563e12 0.438290
\(686\) 5.37566e11 0.0926773
\(687\) 0 0
\(688\) 5.77083e12 0.981952
\(689\) −3.79144e12 −0.640940
\(690\) 0 0
\(691\) 9.92408e12 1.65592 0.827959 0.560788i \(-0.189502\pi\)
0.827959 + 0.560788i \(0.189502\pi\)
\(692\) 1.03050e13 1.70832
\(693\) 0 0
\(694\) 3.92095e12 0.641613
\(695\) −3.73621e12 −0.607435
\(696\) 0 0
\(697\) −2.50996e11 −0.0402827
\(698\) 2.40151e12 0.382944
\(699\) 0 0
\(700\) 9.34495e11 0.147108
\(701\) 1.13064e13 1.76845 0.884223 0.467066i \(-0.154689\pi\)
0.884223 + 0.467066i \(0.154689\pi\)
\(702\) 0 0
\(703\) −1.55715e12 −0.240454
\(704\) 1.07644e12 0.165163
\(705\) 0 0
\(706\) 7.45134e12 1.12879
\(707\) 1.77454e12 0.267115
\(708\) 0 0
\(709\) 1.24336e13 1.84795 0.923974 0.382456i \(-0.124922\pi\)
0.923974 + 0.382456i \(0.124922\pi\)
\(710\) 9.49941e12 1.40292
\(711\) 0 0
\(712\) −5.10135e12 −0.743918
\(713\) 9.90107e12 1.43476
\(714\) 0 0
\(715\) −1.98703e11 −0.0284333
\(716\) 8.55711e12 1.21680
\(717\) 0 0
\(718\) −1.85181e13 −2.60037
\(719\) −9.25121e12 −1.29098 −0.645489 0.763770i \(-0.723346\pi\)
−0.645489 + 0.763770i \(0.723346\pi\)
\(720\) 0 0
\(721\) −5.62306e11 −0.0774932
\(722\) −6.90090e12 −0.945123
\(723\) 0 0
\(724\) −8.80794e12 −1.19138
\(725\) 8.73301e11 0.117393
\(726\) 0 0
\(727\) −3.05496e12 −0.405602 −0.202801 0.979220i \(-0.565004\pi\)
−0.202801 + 0.979220i \(0.565004\pi\)
\(728\) 2.05973e12 0.271781
\(729\) 0 0
\(730\) 5.24946e12 0.684166
\(731\) 4.05296e12 0.524982
\(732\) 0 0
\(733\) 1.02202e13 1.30765 0.653823 0.756647i \(-0.273164\pi\)
0.653823 + 0.756647i \(0.273164\pi\)
\(734\) 8.65100e12 1.10010
\(735\) 0 0
\(736\) −1.78459e12 −0.224175
\(737\) 7.09989e11 0.0886438
\(738\) 0 0
\(739\) 5.72258e12 0.705817 0.352909 0.935658i \(-0.385193\pi\)
0.352909 + 0.935658i \(0.385193\pi\)
\(740\) 2.54653e12 0.312180
\(741\) 0 0
\(742\) −7.75310e12 −0.938983
\(743\) 6.47714e12 0.779711 0.389856 0.920876i \(-0.372525\pi\)
0.389856 + 0.920876i \(0.372525\pi\)
\(744\) 0 0
\(745\) 4.40174e12 0.523506
\(746\) −6.13348e12 −0.725074
\(747\) 0 0
\(748\) −1.07568e12 −0.125639
\(749\) 2.31116e12 0.268325
\(750\) 0 0
\(751\) 9.43753e12 1.08263 0.541313 0.840821i \(-0.317927\pi\)
0.541313 + 0.840821i \(0.317927\pi\)
\(752\) 6.88827e12 0.785471
\(753\) 0 0
\(754\) 3.95945e12 0.446133
\(755\) −6.30098e12 −0.705743
\(756\) 0 0
\(757\) 2.22866e12 0.246667 0.123334 0.992365i \(-0.460641\pi\)
0.123334 + 0.992365i \(0.460641\pi\)
\(758\) 1.37783e13 1.51595
\(759\) 0 0
\(760\) −4.47723e12 −0.486798
\(761\) −1.71728e13 −1.85614 −0.928070 0.372407i \(-0.878533\pi\)
−0.928070 + 0.372407i \(0.878533\pi\)
\(762\) 0 0
\(763\) −4.33250e12 −0.462784
\(764\) −7.24047e12 −0.768859
\(765\) 0 0
\(766\) −3.80179e11 −0.0398987
\(767\) 1.38387e12 0.144383
\(768\) 0 0
\(769\) 1.02149e13 1.05333 0.526667 0.850072i \(-0.323442\pi\)
0.526667 + 0.850072i \(0.323442\pi\)
\(770\) −4.06328e11 −0.0416551
\(771\) 0 0
\(772\) 2.34585e12 0.237696
\(773\) −1.64381e13 −1.65594 −0.827970 0.560772i \(-0.810505\pi\)
−0.827970 + 0.560772i \(0.810505\pi\)
\(774\) 0 0
\(775\) 2.31638e12 0.230649
\(776\) −4.72208e12 −0.467472
\(777\) 0 0
\(778\) 2.26436e13 2.21584
\(779\) 6.17229e11 0.0600520
\(780\) 0 0
\(781\) −2.72841e12 −0.262410
\(782\) 1.00415e13 0.960211
\(783\) 0 0
\(784\) 1.27104e12 0.120153
\(785\) 5.82393e12 0.547397
\(786\) 0 0
\(787\) 1.15989e13 1.07778 0.538889 0.842377i \(-0.318844\pi\)
0.538889 + 0.842377i \(0.318844\pi\)
\(788\) −6.97298e12 −0.644245
\(789\) 0 0
\(790\) 2.44320e12 0.223171
\(791\) 5.98541e11 0.0543625
\(792\) 0 0
\(793\) −5.06168e12 −0.454533
\(794\) −1.42615e13 −1.27342
\(795\) 0 0
\(796\) 1.91627e13 1.69180
\(797\) 1.74592e13 1.53271 0.766357 0.642415i \(-0.222067\pi\)
0.766357 + 0.642415i \(0.222067\pi\)
\(798\) 0 0
\(799\) 4.83777e12 0.419937
\(800\) −4.17508e11 −0.0360379
\(801\) 0 0
\(802\) −3.51215e13 −2.99770
\(803\) −1.50774e12 −0.127970
\(804\) 0 0
\(805\) 2.50556e12 0.210293
\(806\) 1.05022e13 0.876542
\(807\) 0 0
\(808\) 1.39039e13 1.14758
\(809\) 1.56333e12 0.128317 0.0641583 0.997940i \(-0.479564\pi\)
0.0641583 + 0.997940i \(0.479564\pi\)
\(810\) 0 0
\(811\) −8.96295e12 −0.727541 −0.363770 0.931489i \(-0.618511\pi\)
−0.363770 + 0.931489i \(0.618511\pi\)
\(812\) 5.34837e12 0.431737
\(813\) 0 0
\(814\) −1.10725e12 −0.0883970
\(815\) 2.74220e12 0.217716
\(816\) 0 0
\(817\) −9.96672e12 −0.782624
\(818\) 2.17825e13 1.70105
\(819\) 0 0
\(820\) −1.00940e12 −0.0779652
\(821\) −1.08280e13 −0.831774 −0.415887 0.909416i \(-0.636529\pi\)
−0.415887 + 0.909416i \(0.636529\pi\)
\(822\) 0 0
\(823\) −1.86017e13 −1.41336 −0.706680 0.707533i \(-0.749808\pi\)
−0.706680 + 0.707533i \(0.749808\pi\)
\(824\) −4.40577e12 −0.332927
\(825\) 0 0
\(826\) 2.82987e12 0.211522
\(827\) 1.27422e13 0.947261 0.473631 0.880724i \(-0.342943\pi\)
0.473631 + 0.880724i \(0.342943\pi\)
\(828\) 0 0
\(829\) 1.66886e13 1.22722 0.613612 0.789608i \(-0.289716\pi\)
0.613612 + 0.789608i \(0.289716\pi\)
\(830\) 7.45897e12 0.545541
\(831\) 0 0
\(832\) −7.04072e12 −0.509404
\(833\) 8.92674e11 0.0642378
\(834\) 0 0
\(835\) 7.68145e12 0.546832
\(836\) 2.64522e12 0.187298
\(837\) 0 0
\(838\) 3.95268e12 0.276881
\(839\) 1.35503e13 0.944103 0.472051 0.881571i \(-0.343514\pi\)
0.472051 + 0.881571i \(0.343514\pi\)
\(840\) 0 0
\(841\) −9.50901e12 −0.655471
\(842\) −5.02040e12 −0.344218
\(843\) 0 0
\(844\) −4.78168e12 −0.324369
\(845\) −5.32815e12 −0.359518
\(846\) 0 0
\(847\) −5.54473e12 −0.370173
\(848\) −1.83317e13 −1.21736
\(849\) 0 0
\(850\) 2.34922e12 0.154361
\(851\) 6.82773e12 0.446266
\(852\) 0 0
\(853\) 1.77943e12 0.115083 0.0575413 0.998343i \(-0.481674\pi\)
0.0575413 + 0.998343i \(0.481674\pi\)
\(854\) −1.03506e13 −0.665895
\(855\) 0 0
\(856\) 1.81084e13 1.15278
\(857\) 1.81805e13 1.15131 0.575654 0.817693i \(-0.304747\pi\)
0.575654 + 0.817693i \(0.304747\pi\)
\(858\) 0 0
\(859\) −2.50942e13 −1.57255 −0.786274 0.617878i \(-0.787992\pi\)
−0.786274 + 0.617878i \(0.787992\pi\)
\(860\) 1.62993e13 1.01608
\(861\) 0 0
\(862\) 1.99093e13 1.22821
\(863\) −2.65824e13 −1.63134 −0.815671 0.578516i \(-0.803632\pi\)
−0.815671 + 0.578516i \(0.803632\pi\)
\(864\) 0 0
\(865\) 6.46400e12 0.392581
\(866\) −5.01518e13 −3.03010
\(867\) 0 0
\(868\) 1.41862e13 0.848257
\(869\) −7.01735e11 −0.0417430
\(870\) 0 0
\(871\) −4.64386e12 −0.273399
\(872\) −3.39459e13 −1.98822
\(873\) 0 0
\(874\) −2.46932e13 −1.43145
\(875\) 5.86182e11 0.0338062
\(876\) 0 0
\(877\) 2.22625e13 1.27080 0.635398 0.772185i \(-0.280836\pi\)
0.635398 + 0.772185i \(0.280836\pi\)
\(878\) −5.30493e13 −3.01269
\(879\) 0 0
\(880\) −9.60734e11 −0.0540046
\(881\) 9.84025e12 0.550319 0.275160 0.961399i \(-0.411269\pi\)
0.275160 + 0.961399i \(0.411269\pi\)
\(882\) 0 0
\(883\) −7.23541e11 −0.0400535 −0.0200267 0.999799i \(-0.506375\pi\)
−0.0200267 + 0.999799i \(0.506375\pi\)
\(884\) 7.03574e12 0.387502
\(885\) 0 0
\(886\) −9.43275e12 −0.514264
\(887\) 4.19479e12 0.227538 0.113769 0.993507i \(-0.463708\pi\)
0.113769 + 0.993507i \(0.463708\pi\)
\(888\) 0 0
\(889\) 4.96437e12 0.266567
\(890\) −6.58232e12 −0.351661
\(891\) 0 0
\(892\) −4.08626e13 −2.16114
\(893\) −1.18966e13 −0.626027
\(894\) 0 0
\(895\) 5.36763e12 0.279627
\(896\) −1.30836e13 −0.678176
\(897\) 0 0
\(898\) 3.12088e13 1.60152
\(899\) 1.32572e13 0.676915
\(900\) 0 0
\(901\) −1.28747e13 −0.650841
\(902\) 4.38897e11 0.0220766
\(903\) 0 0
\(904\) 4.68968e12 0.233553
\(905\) −5.52496e12 −0.273786
\(906\) 0 0
\(907\) −2.27774e13 −1.11756 −0.558781 0.829315i \(-0.688731\pi\)
−0.558781 + 0.829315i \(0.688731\pi\)
\(908\) −7.42265e13 −3.62387
\(909\) 0 0
\(910\) 2.65769e12 0.128475
\(911\) 3.61101e13 1.73699 0.868493 0.495702i \(-0.165089\pi\)
0.868493 + 0.495702i \(0.165089\pi\)
\(912\) 0 0
\(913\) −2.14236e12 −0.102041
\(914\) −5.05576e13 −2.39623
\(915\) 0 0
\(916\) 4.43704e13 2.08240
\(917\) −5.55458e11 −0.0259411
\(918\) 0 0
\(919\) 2.36288e12 0.109275 0.0546376 0.998506i \(-0.482600\pi\)
0.0546376 + 0.998506i \(0.482600\pi\)
\(920\) 1.96316e13 0.903461
\(921\) 0 0
\(922\) −6.12890e13 −2.79315
\(923\) 1.78458e13 0.809337
\(924\) 0 0
\(925\) 1.59736e12 0.0717407
\(926\) −3.72336e13 −1.66412
\(927\) 0 0
\(928\) −2.38951e12 −0.105765
\(929\) −2.11552e13 −0.931852 −0.465926 0.884824i \(-0.654279\pi\)
−0.465926 + 0.884824i \(0.654279\pi\)
\(930\) 0 0
\(931\) −2.19519e12 −0.0957633
\(932\) −3.17359e13 −1.37778
\(933\) 0 0
\(934\) 1.19551e13 0.514033
\(935\) −6.74742e11 −0.0288726
\(936\) 0 0
\(937\) 1.08882e13 0.461455 0.230728 0.973018i \(-0.425889\pi\)
0.230728 + 0.973018i \(0.425889\pi\)
\(938\) −9.49621e12 −0.400532
\(939\) 0 0
\(940\) 1.94555e13 0.812767
\(941\) 1.12541e13 0.467905 0.233952 0.972248i \(-0.424834\pi\)
0.233952 + 0.972248i \(0.424834\pi\)
\(942\) 0 0
\(943\) −2.70639e12 −0.111452
\(944\) 6.69103e12 0.274233
\(945\) 0 0
\(946\) −7.08710e12 −0.287712
\(947\) −1.93129e13 −0.780320 −0.390160 0.920747i \(-0.627580\pi\)
−0.390160 + 0.920747i \(0.627580\pi\)
\(948\) 0 0
\(949\) 9.86177e12 0.394691
\(950\) −5.77702e12 −0.230116
\(951\) 0 0
\(952\) 6.99427e12 0.275979
\(953\) 1.08910e13 0.427709 0.213855 0.976866i \(-0.431398\pi\)
0.213855 + 0.976866i \(0.431398\pi\)
\(954\) 0 0
\(955\) −4.54174e12 −0.176688
\(956\) −6.17661e13 −2.39161
\(957\) 0 0
\(958\) −4.40580e13 −1.68997
\(959\) 9.70245e12 0.370423
\(960\) 0 0
\(961\) 8.72434e12 0.329972
\(962\) 7.24227e12 0.272638
\(963\) 0 0
\(964\) −8.55307e13 −3.18989
\(965\) 1.47148e12 0.0546238
\(966\) 0 0
\(967\) −4.04400e12 −0.148728 −0.0743639 0.997231i \(-0.523693\pi\)
−0.0743639 + 0.997231i \(0.523693\pi\)
\(968\) −4.34440e13 −1.59034
\(969\) 0 0
\(970\) −6.09294e12 −0.220981
\(971\) 3.21445e13 1.16043 0.580217 0.814462i \(-0.302968\pi\)
0.580217 + 0.814462i \(0.302968\pi\)
\(972\) 0 0
\(973\) −1.43530e13 −0.513376
\(974\) 1.79850e13 0.640318
\(975\) 0 0
\(976\) −2.44733e13 −0.863314
\(977\) 2.04345e13 0.717526 0.358763 0.933429i \(-0.383199\pi\)
0.358763 + 0.933429i \(0.383199\pi\)
\(978\) 0 0
\(979\) 1.89057e12 0.0657764
\(980\) 3.58996e12 0.124329
\(981\) 0 0
\(982\) −2.73078e13 −0.937098
\(983\) 3.90327e13 1.33333 0.666665 0.745357i \(-0.267721\pi\)
0.666665 + 0.745357i \(0.267721\pi\)
\(984\) 0 0
\(985\) −4.37395e12 −0.148051
\(986\) 1.34452e13 0.453025
\(987\) 0 0
\(988\) −1.73017e13 −0.577674
\(989\) 4.37016e13 1.45249
\(990\) 0 0
\(991\) −4.57560e13 −1.50701 −0.753506 0.657441i \(-0.771639\pi\)
−0.753506 + 0.657441i \(0.771639\pi\)
\(992\) −6.33802e12 −0.207803
\(993\) 0 0
\(994\) 3.64929e13 1.18569
\(995\) 1.20202e13 0.388784
\(996\) 0 0
\(997\) −3.09400e12 −0.0991726 −0.0495863 0.998770i \(-0.515790\pi\)
−0.0495863 + 0.998770i \(0.515790\pi\)
\(998\) −6.38531e13 −2.03749
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.10.a.e.1.4 4
3.2 odd 2 105.10.a.d.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.10.a.d.1.1 4 3.2 odd 2
315.10.a.e.1.4 4 1.1 even 1 trivial