L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−0.707 + 0.707i)7-s + (0.707 − 0.707i)8-s + 0.585i·11-s + (−3.43 − 3.43i)13-s + 1.00·14-s − 1.00·16-s + (0.906 + 0.906i)17-s + 2.04i·19-s + (0.414 − 0.414i)22-s + (−0.257 + 0.257i)23-s + 4.86i·26-s + (−0.707 − 0.707i)28-s + 1.75·29-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (−0.267 + 0.267i)7-s + (0.250 − 0.250i)8-s + 0.176i·11-s + (−0.953 − 0.953i)13-s + 0.267·14-s − 0.250·16-s + (0.219 + 0.219i)17-s + 0.470i·19-s + (0.0883 − 0.0883i)22-s + (−0.0537 + 0.0537i)23-s + 0.953i·26-s + (−0.133 − 0.133i)28-s + 0.325·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.121564243\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.121564243\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.707 - 0.707i)T \) |
good | 11 | \( 1 - 0.585iT - 11T^{2} \) |
| 13 | \( 1 + (3.43 + 3.43i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.906 - 0.906i)T + 17iT^{2} \) |
| 19 | \( 1 - 2.04iT - 19T^{2} \) |
| 23 | \( 1 + (0.257 - 0.257i)T - 23iT^{2} \) |
| 29 | \( 1 - 1.75T + 29T^{2} \) |
| 31 | \( 1 - 1.47T + 31T^{2} \) |
| 37 | \( 1 + (-4.04 + 4.04i)T - 37iT^{2} \) |
| 41 | \( 1 - 3.84iT - 41T^{2} \) |
| 43 | \( 1 + (5.10 + 5.10i)T + 43iT^{2} \) |
| 47 | \( 1 + (-5.49 - 5.49i)T + 47iT^{2} \) |
| 53 | \( 1 + (5.02 - 5.02i)T - 53iT^{2} \) |
| 59 | \( 1 - 11.1T + 59T^{2} \) |
| 61 | \( 1 - 3.78T + 61T^{2} \) |
| 67 | \( 1 + (-6.74 + 6.74i)T - 67iT^{2} \) |
| 71 | \( 1 - 10.9iT - 71T^{2} \) |
| 73 | \( 1 + (5.97 + 5.97i)T + 73iT^{2} \) |
| 79 | \( 1 - 0.944iT - 79T^{2} \) |
| 83 | \( 1 + (-7.82 + 7.82i)T - 83iT^{2} \) |
| 89 | \( 1 - 0.0705T + 89T^{2} \) |
| 97 | \( 1 + (-0.746 + 0.746i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.741182750857460192288702023368, −7.941164031535419761884902130393, −7.44822949888239034101951556581, −6.47995063762519355083123325795, −5.62125663045490802222096777189, −4.78961337563564726228340486511, −3.77188498422400026478529536334, −2.89598299012985863014463256416, −2.10758038220133630552309515733, −0.77592535775976521421220301103,
0.59527336924763467924883553242, 1.94637393172584072472016517687, 2.96360891159280893940080744495, 4.15777589451826408215959423702, 4.90448563380761616764360616930, 5.73799741330026210888298053556, 6.79460264218925820319301395069, 6.98016261284486714441154568674, 7.988552528446080432047316521128, 8.607939050287288016438270917200