L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (−0.707 + 0.707i)7-s + (0.707 − 0.707i)8-s + 0.585i·11-s + (−3.43 − 3.43i)13-s + 1.00·14-s − 1.00·16-s + (0.906 + 0.906i)17-s + 2.04i·19-s + (0.414 − 0.414i)22-s + (−0.257 + 0.257i)23-s + 4.86i·26-s + (−0.707 − 0.707i)28-s + 1.75·29-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (−0.267 + 0.267i)7-s + (0.250 − 0.250i)8-s + 0.176i·11-s + (−0.953 − 0.953i)13-s + 0.267·14-s − 0.250·16-s + (0.219 + 0.219i)17-s + 0.470i·19-s + (0.0883 − 0.0883i)22-s + (−0.0537 + 0.0537i)23-s + 0.953i·26-s + (−0.133 − 0.133i)28-s + 0.325·29-s + ⋯ |
Λ(s)=(=(3150s/2ΓC(s)L(s)(0.999+0.0387i)Λ(2−s)
Λ(s)=(=(3150s/2ΓC(s+1/2)L(s)(0.999+0.0387i)Λ(1−s)
Degree: |
2 |
Conductor: |
3150
= 2⋅32⋅52⋅7
|
Sign: |
0.999+0.0387i
|
Analytic conductor: |
25.1528 |
Root analytic conductor: |
5.01526 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3150(2843,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3150, ( :1/2), 0.999+0.0387i)
|
Particular Values
L(1) |
≈ |
1.121564243 |
L(21) |
≈ |
1.121564243 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 5 | 1 |
| 7 | 1+(0.707−0.707i)T |
good | 11 | 1−0.585iT−11T2 |
| 13 | 1+(3.43+3.43i)T+13iT2 |
| 17 | 1+(−0.906−0.906i)T+17iT2 |
| 19 | 1−2.04iT−19T2 |
| 23 | 1+(0.257−0.257i)T−23iT2 |
| 29 | 1−1.75T+29T2 |
| 31 | 1−1.47T+31T2 |
| 37 | 1+(−4.04+4.04i)T−37iT2 |
| 41 | 1−3.84iT−41T2 |
| 43 | 1+(5.10+5.10i)T+43iT2 |
| 47 | 1+(−5.49−5.49i)T+47iT2 |
| 53 | 1+(5.02−5.02i)T−53iT2 |
| 59 | 1−11.1T+59T2 |
| 61 | 1−3.78T+61T2 |
| 67 | 1+(−6.74+6.74i)T−67iT2 |
| 71 | 1−10.9iT−71T2 |
| 73 | 1+(5.97+5.97i)T+73iT2 |
| 79 | 1−0.944iT−79T2 |
| 83 | 1+(−7.82+7.82i)T−83iT2 |
| 89 | 1−0.0705T+89T2 |
| 97 | 1+(−0.746+0.746i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.741182750857460192288702023368, −7.941164031535419761884902130393, −7.44822949888239034101951556581, −6.47995063762519355083123325795, −5.62125663045490802222096777189, −4.78961337563564726228340486511, −3.77188498422400026478529536334, −2.89598299012985863014463256416, −2.10758038220133630552309515733, −0.77592535775976521421220301103,
0.59527336924763467924883553242, 1.94637393172584072472016517687, 2.96360891159280893940080744495, 4.15777589451826408215959423702, 4.90448563380761616764360616930, 5.73799741330026210888298053556, 6.79460264218925820319301395069, 6.98016261284486714441154568674, 7.988552528446080432047316521128, 8.607939050287288016438270917200