Properties

Label 3150.2.m.h
Level 31503150
Weight 22
Character orbit 3150.m
Analytic conductor 25.15325.153
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(1457,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.1457");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3150=232527 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3150.m (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.152876636725.1528766367
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q2β3q4+β1q7β1q8+(β52β3β1)q11+(β6+β5β4+1)q13+q14q16+(β7+β6+β4)q17++β1q98+O(q100) q + \beta_{5} q^{2} - \beta_{3} q^{4} + \beta_1 q^{7} - \beta_1 q^{8} + (\beta_{5} - 2 \beta_{3} - \beta_1) q^{11} + (\beta_{6} + \beta_{5} - \beta_{4} + \cdots - 1) q^{13} + q^{14} - q^{16} + ( - \beta_{7} + \beta_{6} + \cdots - \beta_{4}) q^{17}+ \cdots + \beta_1 q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q13+8q148q168q2216q23+16q378q38+8q4316q44+8q46+8q47+8q5232q53+8q58+8q5932q6132q6216q67+16q97+O(q100) 8 q - 8 q^{13} + 8 q^{14} - 8 q^{16} - 8 q^{22} - 16 q^{23} + 16 q^{37} - 8 q^{38} + 8 q^{43} - 16 q^{44} + 8 q^{46} + 8 q^{47} + 8 q^{52} - 32 q^{53} + 8 q^{58} + 8 q^{59} - 32 q^{61} - 32 q^{62} - 16 q^{67}+ \cdots - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ243 \zeta_{24}^{3} Copy content Toggle raw display
β2\beta_{2}== ζ245+ζ24 \zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
β3\beta_{3}== ζ246 \zeta_{24}^{6} Copy content Toggle raw display
β4\beta_{4}== 2ζ2441 2\zeta_{24}^{4} - 1 Copy content Toggle raw display
β5\beta_{5}== ζ245+ζ24 -\zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
β6\beta_{6}== ζ246+2ζ242 -\zeta_{24}^{6} + 2\zeta_{24}^{2} Copy content Toggle raw display
β7\beta_{7}== 2ζ247ζ243 2\zeta_{24}^{7} - \zeta_{24}^{3} Copy content Toggle raw display
ζ24\zeta_{24}== (β5+β2)/2 ( \beta_{5} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== (β6+β3)/2 ( \beta_{6} + \beta_{3} ) / 2 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== β1 \beta_1 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== (β4+1)/2 ( \beta_{4} + 1 ) / 2 Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (β5+β2)/2 ( -\beta_{5} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== β3 \beta_{3} Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β7+β1)/2 ( \beta_{7} + \beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3150Z)×\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times.

nn 127127 451451 28012801
χ(n)\chi(n) β3\beta_{3} 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1457.1
0.258819 + 0.965926i
−0.965926 0.258819i
−0.258819 0.965926i
0.965926 + 0.258819i
0.258819 0.965926i
−0.965926 + 0.258819i
−0.258819 + 0.965926i
0.965926 0.258819i
−0.707107 + 0.707107i 0 1.00000i 0 0 −0.707107 0.707107i 0.707107 + 0.707107i 0 0
1457.2 −0.707107 + 0.707107i 0 1.00000i 0 0 −0.707107 0.707107i 0.707107 + 0.707107i 0 0
1457.3 0.707107 0.707107i 0 1.00000i 0 0 0.707107 + 0.707107i −0.707107 0.707107i 0 0
1457.4 0.707107 0.707107i 0 1.00000i 0 0 0.707107 + 0.707107i −0.707107 0.707107i 0 0
2843.1 −0.707107 0.707107i 0 1.00000i 0 0 −0.707107 + 0.707107i 0.707107 0.707107i 0 0
2843.2 −0.707107 0.707107i 0 1.00000i 0 0 −0.707107 + 0.707107i 0.707107 0.707107i 0 0
2843.3 0.707107 + 0.707107i 0 1.00000i 0 0 0.707107 0.707107i −0.707107 + 0.707107i 0 0
2843.4 0.707107 + 0.707107i 0 1.00000i 0 0 0.707107 0.707107i −0.707107 + 0.707107i 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1457.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3150.2.m.h yes 8
3.b odd 2 1 3150.2.m.g 8
5.b even 2 1 3150.2.m.l yes 8
5.c odd 4 1 3150.2.m.g 8
5.c odd 4 1 3150.2.m.k yes 8
15.d odd 2 1 3150.2.m.k yes 8
15.e even 4 1 inner 3150.2.m.h yes 8
15.e even 4 1 3150.2.m.l yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3150.2.m.g 8 3.b odd 2 1
3150.2.m.g 8 5.c odd 4 1
3150.2.m.h yes 8 1.a even 1 1 trivial
3150.2.m.h yes 8 15.e even 4 1 inner
3150.2.m.k yes 8 5.c odd 4 1
3150.2.m.k yes 8 15.d odd 2 1
3150.2.m.l yes 8 5.b even 2 1
3150.2.m.l yes 8 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3150,[χ])S_{2}^{\mathrm{new}}(3150, [\chi]):

T114+12T112+4 T_{11}^{4} + 12T_{11}^{2} + 4 Copy content Toggle raw display
T138+8T137+32T136+24T135+2T134+72T133+800T13240T13+1 T_{13}^{8} + 8T_{13}^{7} + 32T_{13}^{6} + 24T_{13}^{5} + 2T_{13}^{4} + 72T_{13}^{3} + 800T_{13}^{2} - 40T_{13} + 1 Copy content Toggle raw display
T17896T175+770T1742496T173+4608T1724512T17+2209 T_{17}^{8} - 96T_{17}^{5} + 770T_{17}^{4} - 2496T_{17}^{3} + 4608T_{17}^{2} - 4512T_{17} + 2209 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
1111 (T4+12T2+4)2 (T^{4} + 12 T^{2} + 4)^{2} Copy content Toggle raw display
1313 T8+8T7++1 T^{8} + 8 T^{7} + \cdots + 1 Copy content Toggle raw display
1717 T896T5++2209 T^{8} - 96 T^{5} + \cdots + 2209 Copy content Toggle raw display
1919 (T4+28T2+100)2 (T^{4} + 28 T^{2} + 100)^{2} Copy content Toggle raw display
2323 T8+16T7++529 T^{8} + 16 T^{7} + \cdots + 529 Copy content Toggle raw display
2929 (T458T2++337)2 (T^{4} - 58 T^{2} + \cdots + 337)^{2} Copy content Toggle raw display
3131 (T482T2++457)2 (T^{4} - 82 T^{2} + \cdots + 457)^{2} Copy content Toggle raw display
3737 T816T7++256 T^{8} - 16 T^{7} + \cdots + 256 Copy content Toggle raw display
4141 T8+156T6++69169 T^{8} + 156 T^{6} + \cdots + 69169 Copy content Toggle raw display
4343 T88T7++5041 T^{8} - 8 T^{7} + \cdots + 5041 Copy content Toggle raw display
4747 T88T7++446224 T^{8} - 8 T^{7} + \cdots + 446224 Copy content Toggle raw display
5353 T8+32T7++361201 T^{8} + 32 T^{7} + \cdots + 361201 Copy content Toggle raw display
5959 (T44T366T2+71)2 (T^{4} - 4 T^{3} - 66 T^{2} + \cdots - 71)^{2} Copy content Toggle raw display
6161 (T4+16T3++937)2 (T^{4} + 16 T^{3} + \cdots + 937)^{2} Copy content Toggle raw display
6767 T8+16T7++9339136 T^{8} + 16 T^{7} + \cdots + 9339136 Copy content Toggle raw display
7171 (T4+128T2+1024)2 (T^{4} + 128 T^{2} + 1024)^{2} Copy content Toggle raw display
7373 T8+5256T4+810000 T^{8} + 5256 T^{4} + 810000 Copy content Toggle raw display
7979 T8+312T6++913936 T^{8} + 312 T^{6} + \cdots + 913936 Copy content Toggle raw display
8383 T88T7++113569 T^{8} - 8 T^{7} + \cdots + 113569 Copy content Toggle raw display
8989 (T4+8T340T2++16)2 (T^{4} + 8 T^{3} - 40 T^{2} + \cdots + 16)^{2} Copy content Toggle raw display
9797 T8+16T7++595984 T^{8} + 16 T^{7} + \cdots + 595984 Copy content Toggle raw display
show more
show less