Properties

Label 2-3168-88.43-c1-0-21
Degree $2$
Conductor $3168$
Sign $0.884 - 0.466i$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·5-s − 0.936·7-s + (3.09 + 1.19i)11-s + 4.27·13-s + 3.33i·17-s + 2.89i·19-s + 5.12i·23-s + 25-s − 6.60·29-s + 1.73i·31-s + 1.87i·35-s − 6.18i·37-s + 1.46i·41-s + 10.3i·43-s + 6i·47-s + ⋯
L(s)  = 1  − 0.894i·5-s − 0.353·7-s + (0.932 + 0.361i)11-s + 1.18·13-s + 0.808i·17-s + 0.664i·19-s + 1.06i·23-s + 0.200·25-s − 1.22·29-s + 0.311i·31-s + 0.316i·35-s − 1.01i·37-s + 0.228i·41-s + 1.57i·43-s + 0.875i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.884 - 0.466i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.884 - 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $0.884 - 0.466i$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3168} (2287, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ 0.884 - 0.466i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.850867509\)
\(L(\frac12)\) \(\approx\) \(1.850867509\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-3.09 - 1.19i)T \)
good5 \( 1 + 2iT - 5T^{2} \)
7 \( 1 + 0.936T + 7T^{2} \)
13 \( 1 - 4.27T + 13T^{2} \)
17 \( 1 - 3.33iT - 17T^{2} \)
19 \( 1 - 2.89iT - 19T^{2} \)
23 \( 1 - 5.12iT - 23T^{2} \)
29 \( 1 + 6.60T + 29T^{2} \)
31 \( 1 - 1.73iT - 31T^{2} \)
37 \( 1 + 6.18iT - 37T^{2} \)
41 \( 1 - 1.46iT - 41T^{2} \)
43 \( 1 - 10.3iT - 43T^{2} \)
47 \( 1 - 6iT - 47T^{2} \)
53 \( 1 + 8.24iT - 53T^{2} \)
59 \( 1 + 9.65T + 59T^{2} \)
61 \( 1 - 9.06T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 - 4.24iT - 71T^{2} \)
73 \( 1 - 13.2iT - 73T^{2} \)
79 \( 1 - 3.86T + 79T^{2} \)
83 \( 1 + 2.39iT - 83T^{2} \)
89 \( 1 - 3.47T + 89T^{2} \)
97 \( 1 - 11.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.720909249270766169884917166140, −8.148694924363536139914302647148, −7.27200621499959668030634165970, −6.31087408422923864273019376771, −5.82116734962437204090324339267, −4.86694165575632560531188715895, −3.91389975816825625013739133460, −3.44771172225608755101100585235, −1.82385012106730570000373933504, −1.12217816829237669145323765787, 0.66663176879635249029339811664, 2.05909616162718705863261345192, 3.14399966658414402496515791549, 3.68046069833180237839931684551, 4.70288815138285138962597528707, 5.76425043798023047718191896170, 6.55234659380919833417416966716, 6.86673708704444352283966580699, 7.82129313328336558699543828782, 8.814519771811710024311911280429

Graph of the $Z$-function along the critical line