L(s) = 1 | − 2i·5-s − 0.936·7-s + (3.09 + 1.19i)11-s + 4.27·13-s + 3.33i·17-s + 2.89i·19-s + 5.12i·23-s + 25-s − 6.60·29-s + 1.73i·31-s + 1.87i·35-s − 6.18i·37-s + 1.46i·41-s + 10.3i·43-s + 6i·47-s + ⋯ |
L(s) = 1 | − 0.894i·5-s − 0.353·7-s + (0.932 + 0.361i)11-s + 1.18·13-s + 0.808i·17-s + 0.664i·19-s + 1.06i·23-s + 0.200·25-s − 1.22·29-s + 0.311i·31-s + 0.316i·35-s − 1.01i·37-s + 0.228i·41-s + 1.57i·43-s + 0.875i·47-s + ⋯ |
Λ(s)=(=(3168s/2ΓC(s)L(s)(0.884−0.466i)Λ(2−s)
Λ(s)=(=(3168s/2ΓC(s+1/2)L(s)(0.884−0.466i)Λ(1−s)
Degree: |
2 |
Conductor: |
3168
= 25⋅32⋅11
|
Sign: |
0.884−0.466i
|
Analytic conductor: |
25.2966 |
Root analytic conductor: |
5.02957 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3168(2287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3168, ( :1/2), 0.884−0.466i)
|
Particular Values
L(1) |
≈ |
1.850867509 |
L(21) |
≈ |
1.850867509 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−3.09−1.19i)T |
good | 5 | 1+2iT−5T2 |
| 7 | 1+0.936T+7T2 |
| 13 | 1−4.27T+13T2 |
| 17 | 1−3.33iT−17T2 |
| 19 | 1−2.89iT−19T2 |
| 23 | 1−5.12iT−23T2 |
| 29 | 1+6.60T+29T2 |
| 31 | 1−1.73iT−31T2 |
| 37 | 1+6.18iT−37T2 |
| 41 | 1−1.46iT−41T2 |
| 43 | 1−10.3iT−43T2 |
| 47 | 1−6iT−47T2 |
| 53 | 1+8.24iT−53T2 |
| 59 | 1+9.65T+59T2 |
| 61 | 1−9.06T+61T2 |
| 67 | 1−10.2T+67T2 |
| 71 | 1−4.24iT−71T2 |
| 73 | 1−13.2iT−73T2 |
| 79 | 1−3.86T+79T2 |
| 83 | 1+2.39iT−83T2 |
| 89 | 1−3.47T+89T2 |
| 97 | 1−11.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.720909249270766169884917166140, −8.148694924363536139914302647148, −7.27200621499959668030634165970, −6.31087408422923864273019376771, −5.82116734962437204090324339267, −4.86694165575632560531188715895, −3.91389975816825625013739133460, −3.44771172225608755101100585235, −1.82385012106730570000373933504, −1.12217816829237669145323765787,
0.66663176879635249029339811664, 2.05909616162718705863261345192, 3.14399966658414402496515791549, 3.68046069833180237839931684551, 4.70288815138285138962597528707, 5.76425043798023047718191896170, 6.55234659380919833417416966716, 6.86673708704444352283966580699, 7.82129313328336558699543828782, 8.814519771811710024311911280429