L(s) = 1 | − 2i·5-s − 0.936·7-s + (3.09 + 1.19i)11-s + 4.27·13-s + 3.33i·17-s + 2.89i·19-s + 5.12i·23-s + 25-s − 6.60·29-s + 1.73i·31-s + 1.87i·35-s − 6.18i·37-s + 1.46i·41-s + 10.3i·43-s + 6i·47-s + ⋯ |
L(s) = 1 | − 0.894i·5-s − 0.353·7-s + (0.932 + 0.361i)11-s + 1.18·13-s + 0.808i·17-s + 0.664i·19-s + 1.06i·23-s + 0.200·25-s − 1.22·29-s + 0.311i·31-s + 0.316i·35-s − 1.01i·37-s + 0.228i·41-s + 1.57i·43-s + 0.875i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.884 - 0.466i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.884 - 0.466i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.850867509\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.850867509\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-3.09 - 1.19i)T \) |
good | 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 + 0.936T + 7T^{2} \) |
| 13 | \( 1 - 4.27T + 13T^{2} \) |
| 17 | \( 1 - 3.33iT - 17T^{2} \) |
| 19 | \( 1 - 2.89iT - 19T^{2} \) |
| 23 | \( 1 - 5.12iT - 23T^{2} \) |
| 29 | \( 1 + 6.60T + 29T^{2} \) |
| 31 | \( 1 - 1.73iT - 31T^{2} \) |
| 37 | \( 1 + 6.18iT - 37T^{2} \) |
| 41 | \( 1 - 1.46iT - 41T^{2} \) |
| 43 | \( 1 - 10.3iT - 43T^{2} \) |
| 47 | \( 1 - 6iT - 47T^{2} \) |
| 53 | \( 1 + 8.24iT - 53T^{2} \) |
| 59 | \( 1 + 9.65T + 59T^{2} \) |
| 61 | \( 1 - 9.06T + 61T^{2} \) |
| 67 | \( 1 - 10.2T + 67T^{2} \) |
| 71 | \( 1 - 4.24iT - 71T^{2} \) |
| 73 | \( 1 - 13.2iT - 73T^{2} \) |
| 79 | \( 1 - 3.86T + 79T^{2} \) |
| 83 | \( 1 + 2.39iT - 83T^{2} \) |
| 89 | \( 1 - 3.47T + 89T^{2} \) |
| 97 | \( 1 - 11.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.720909249270766169884917166140, −8.148694924363536139914302647148, −7.27200621499959668030634165970, −6.31087408422923864273019376771, −5.82116734962437204090324339267, −4.86694165575632560531188715895, −3.91389975816825625013739133460, −3.44771172225608755101100585235, −1.82385012106730570000373933504, −1.12217816829237669145323765787,
0.66663176879635249029339811664, 2.05909616162718705863261345192, 3.14399966658414402496515791549, 3.68046069833180237839931684551, 4.70288815138285138962597528707, 5.76425043798023047718191896170, 6.55234659380919833417416966716, 6.86673708704444352283966580699, 7.82129313328336558699543828782, 8.814519771811710024311911280429