Properties

Label 3168.2.h.i
Level $3168$
Weight $2$
Character orbit 3168.h
Analytic conductor $25.297$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3168,2,Mod(2287,3168)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3168, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3168.2287");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3168 = 2^{5} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3168.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2966073603\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.3342602057661458415616.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 20x^{14} + 164x^{12} - 666x^{10} + 1300x^{8} - 924x^{6} + 273x^{4} + 404x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: no (minimal twist has level 792)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{5} - \beta_{14} q^{7} + ( - \beta_{13} - \beta_{7}) q^{11} + (\beta_{14} - \beta_{11}) q^{13} - \beta_{7} q^{17} - \beta_{8} q^{19} + \beta_{5} q^{23} + q^{25} + \beta_{2} q^{29} + \beta_{12} q^{31}+ \cdots + ( - 3 \beta_{3} - 1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{25} - 32 q^{49} + 32 q^{67} - 64 q^{91} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 20x^{14} + 164x^{12} - 666x^{10} + 1300x^{8} - 924x^{6} + 273x^{4} + 404x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 1017 \nu^{14} - 18889 \nu^{12} + 141809 \nu^{10} - 504639 \nu^{8} + 779299 \nu^{6} - 250803 \nu^{4} + \cdots + 1865592 ) / 347684 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 2447 \nu^{14} + 49511 \nu^{12} - 412949 \nu^{10} + 1685873 \nu^{8} - 3080369 \nu^{6} + \cdots - 360024 ) / 347684 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 800 \nu^{14} - 15844 \nu^{12} + 126372 \nu^{10} - 485558 \nu^{8} + 824496 \nu^{6} - 258554 \nu^{4} + \cdots + 310223 ) / 86921 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 6891 \nu^{15} - 135786 \nu^{13} + 1092346 \nu^{11} - 4305788 \nu^{9} + 7949022 \nu^{7} + \cdots + 3564012 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 9337 \nu^{15} - 192870 \nu^{13} + 1637078 \nu^{11} - 6938020 \nu^{9} + 14314690 \nu^{7} + \cdots + 5304612 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3522 \nu^{15} - 68884 \nu^{13} + 545053 \nu^{11} - 2077259 \nu^{9} + 3556830 \nu^{7} + \cdots + 1812748 \nu ) / 173842 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 13987 \nu^{14} + 283685 \nu^{12} - 2375450 \nu^{10} + 10006389 \nu^{8} - 21090917 \nu^{6} + \cdots - 3647880 ) / 173842 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 11595 \nu^{15} - 231812 \nu^{13} + 1903314 \nu^{11} - 7753568 \nu^{9} + 15174808 \nu^{7} + \cdots + 6116828 \nu ) / 347684 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 25585 \nu^{14} - 518343 \nu^{12} + 4328246 \nu^{10} - 18126731 \nu^{8} + 37755575 \nu^{6} + \cdots + 6522868 ) / 173842 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 38555 \nu^{14} + 783139 \nu^{12} - 6561887 \nu^{10} + 27628481 \nu^{8} - 58067193 \nu^{6} + \cdots - 10043576 ) / 173842 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 56101 \nu^{15} + 1136722 \nu^{13} - 9499560 \nu^{11} + 39874286 \nu^{9} - 83528306 \nu^{7} + \cdots - 14653004 \nu ) / 347684 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 141343 \nu^{14} - 2858839 \nu^{12} + 23840107 \nu^{10} - 99747945 \nu^{8} + 207692533 \nu^{6} + \cdots + 35860056 ) / 347684 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 155031 \nu^{15} - 23196 \nu^{14} - 3141792 \nu^{13} + 469316 \nu^{12} + 26258800 \nu^{11} + \cdots - 5749976 ) / 695368 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 204751 \nu^{15} + 4145926 \nu^{13} - 34610826 \nu^{11} + 144971388 \nu^{9} - 302181482 \nu^{7} + \cdots - 51983964 \nu ) / 695368 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 101947 \nu^{15} - 2063569 \nu^{13} + 17216979 \nu^{11} - 72051334 \nu^{9} + 149956769 \nu^{7} + \cdots + 25677692 \nu ) / 86921 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{14} + 2\beta_{13} + \beta_{11} + \beta_{9} + \beta_{7} + \beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{10} + \beta_{9} - \beta_{7} - 2\beta _1 + 10 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{15} + 8 \beta_{14} + 14 \beta_{13} + 12 \beta_{11} + 7 \beta_{9} - 3 \beta_{8} + \cdots + 16 \beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2\beta_{12} + 7\beta_{10} + 9\beta_{9} - 13\beta_{7} + 2\beta_{3} - 8\beta _1 + 36 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5 \beta_{15} + 32 \beta_{14} + 42 \beta_{13} + 36 \beta_{11} + 21 \beta_{9} - 25 \beta_{8} + \cdots + 122 \beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -20\beta_{12} + 42\beta_{10} + 71\beta_{9} - 87\beta_{7} + 9\beta_{3} + 4\beta_{2} - 20\beta _1 + 79 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 11 \beta_{15} + 56 \beta_{14} + 22 \beta_{13} + 8 \beta_{11} + 11 \beta_{9} - 175 \beta_{8} + \cdots + 754 \beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -142\beta_{12} + 213\beta_{10} + 465\beta_{9} - 453\beta_{7} + 6\beta_{3} + 16\beta_{2} + 48\beta _1 - 264 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 81 \beta_{15} - 608 \beta_{14} - 998 \beta_{13} - 860 \beta_{11} - 499 \beta_{9} + \cdots + 3908 \beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 810 \beta_{12} + 883 \beta_{10} + 2511 \beta_{9} - 1923 \beta_{7} - 340 \beta_{3} - 96 \beta_{2} + \cdots - 4950 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 1357 \beta_{15} - 8816 \beta_{14} - 10474 \beta_{13} - 8260 \beta_{11} - 5237 \beta_{9} + \cdots + 16454 \beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 3584 \beta_{12} + 2632 \beta_{10} + 10561 \beta_{9} - 5981 \beta_{7} - 4199 \beta_{3} - 2024 \beta_{2} + \cdots - 41469 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 12063 \beta_{15} - 74328 \beta_{14} - 74454 \beta_{13} - 54976 \beta_{11} - 37227 \beta_{9} + \cdots + 46594 \beta_{4} ) / 8 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 9250 \beta_{12} + 1295 \beta_{10} + 24871 \beta_{9} - 4567 \beta_{7} - 34006 \beta_{3} + \cdots - 266984 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 82603 \beta_{15} - 491936 \beta_{14} - 431322 \beta_{13} - 298844 \beta_{11} - 215661 \beta_{9} + \cdots - 36304 \beta_{4} ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3168\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(991\) \(1189\) \(1729\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2287.1
2.34517 0.500000i
0.0131233 0.500000i
0.946412 0.500000i
−2.14576 0.500000i
2.14576 0.500000i
−0.946412 0.500000i
−0.0131233 0.500000i
−2.34517 0.500000i
2.34517 + 0.500000i
0.0131233 + 0.500000i
0.946412 + 0.500000i
−2.14576 + 0.500000i
2.14576 + 0.500000i
−0.946412 + 0.500000i
−0.0131233 + 0.500000i
−2.34517 + 0.500000i
0 0 0 2.00000i 0 −3.02045 0 0 0
2287.2 0 0 0 2.00000i 0 −3.02045 0 0 0
2287.3 0 0 0 2.00000i 0 −0.936426 0 0 0
2287.4 0 0 0 2.00000i 0 −0.936426 0 0 0
2287.5 0 0 0 2.00000i 0 0.936426 0 0 0
2287.6 0 0 0 2.00000i 0 0.936426 0 0 0
2287.7 0 0 0 2.00000i 0 3.02045 0 0 0
2287.8 0 0 0 2.00000i 0 3.02045 0 0 0
2287.9 0 0 0 2.00000i 0 −3.02045 0 0 0
2287.10 0 0 0 2.00000i 0 −3.02045 0 0 0
2287.11 0 0 0 2.00000i 0 −0.936426 0 0 0
2287.12 0 0 0 2.00000i 0 −0.936426 0 0 0
2287.13 0 0 0 2.00000i 0 0.936426 0 0 0
2287.14 0 0 0 2.00000i 0 0.936426 0 0 0
2287.15 0 0 0 2.00000i 0 3.02045 0 0 0
2287.16 0 0 0 2.00000i 0 3.02045 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2287.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
11.b odd 2 1 inner
24.f even 2 1 inner
33.d even 2 1 inner
88.g even 2 1 inner
264.p odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3168.2.h.i 16
3.b odd 2 1 inner 3168.2.h.i 16
4.b odd 2 1 792.2.h.i 16
8.b even 2 1 792.2.h.i 16
8.d odd 2 1 inner 3168.2.h.i 16
11.b odd 2 1 inner 3168.2.h.i 16
12.b even 2 1 792.2.h.i 16
24.f even 2 1 inner 3168.2.h.i 16
24.h odd 2 1 792.2.h.i 16
33.d even 2 1 inner 3168.2.h.i 16
44.c even 2 1 792.2.h.i 16
88.b odd 2 1 792.2.h.i 16
88.g even 2 1 inner 3168.2.h.i 16
132.d odd 2 1 792.2.h.i 16
264.m even 2 1 792.2.h.i 16
264.p odd 2 1 inner 3168.2.h.i 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
792.2.h.i 16 4.b odd 2 1
792.2.h.i 16 8.b even 2 1
792.2.h.i 16 12.b even 2 1
792.2.h.i 16 24.h odd 2 1
792.2.h.i 16 44.c even 2 1
792.2.h.i 16 88.b odd 2 1
792.2.h.i 16 132.d odd 2 1
792.2.h.i 16 264.m even 2 1
3168.2.h.i 16 1.a even 1 1 trivial
3168.2.h.i 16 3.b odd 2 1 inner
3168.2.h.i 16 8.d odd 2 1 inner
3168.2.h.i 16 11.b odd 2 1 inner
3168.2.h.i 16 24.f even 2 1 inner
3168.2.h.i 16 33.d even 2 1 inner
3168.2.h.i 16 88.g even 2 1 inner
3168.2.h.i 16 264.p odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3168, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{4} - 10T_{7}^{2} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{2} + 4)^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} - 10 T^{2} + 8)^{4} \) Copy content Toggle raw display
$11$ \( (T^{8} - 16 T^{6} + \cdots + 14641)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 20 T^{2} + 32)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 14 T^{2} + 32)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 58 T^{2} + 416)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 36 T^{2} + 256)^{4} \) Copy content Toggle raw display
$29$ \( (T^{4} - 46 T^{2} + 104)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 72 T^{2} + 208)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 60 T^{2} + 832)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 62 T^{2} + 128)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 122 T^{2} + 1664)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 36)^{8} \) Copy content Toggle raw display
$53$ \( (T^{2} + 68)^{8} \) Copy content Toggle raw display
$59$ \( (T^{4} - 236 T^{2} + 13312)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} - 148 T^{2} + 5408)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 4 T - 64)^{8} \) Copy content Toggle raw display
$71$ \( (T^{4} + 168 T^{2} + 2704)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 184 T^{2} + 1664)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} - 170 T^{2} + 2312)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 28 T^{2} + 128)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 288 T^{2} + 3328)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 2 T - 152)^{8} \) Copy content Toggle raw display
show more
show less