L(s) = 1 | − 2i·5-s + 3.02·7-s + (2.33 + 2.35i)11-s − 1.32·13-s + 1.69i·17-s − 7.04i·19-s − 3.12i·23-s + 25-s + 1.54·29-s − 8.30i·31-s − 6.04i·35-s − 4.66i·37-s + 7.73i·41-s + 3.95i·43-s + 6i·47-s + ⋯ |
L(s) = 1 | − 0.894i·5-s + 1.14·7-s + (0.703 + 0.711i)11-s − 0.367·13-s + 0.411i·17-s − 1.61i·19-s − 0.651i·23-s + 0.200·25-s + 0.286·29-s − 1.49i·31-s − 1.02i·35-s − 0.766i·37-s + 1.20i·41-s + 0.603i·43-s + 0.875i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.517 + 0.855i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.517 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.190455927\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.190455927\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-2.33 - 2.35i)T \) |
good | 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 - 3.02T + 7T^{2} \) |
| 13 | \( 1 + 1.32T + 13T^{2} \) |
| 17 | \( 1 - 1.69iT - 17T^{2} \) |
| 19 | \( 1 + 7.04iT - 19T^{2} \) |
| 23 | \( 1 + 3.12iT - 23T^{2} \) |
| 29 | \( 1 - 1.54T + 29T^{2} \) |
| 31 | \( 1 + 8.30iT - 31T^{2} \) |
| 37 | \( 1 + 4.66iT - 37T^{2} \) |
| 41 | \( 1 - 7.73iT - 41T^{2} \) |
| 43 | \( 1 - 3.95iT - 43T^{2} \) |
| 47 | \( 1 - 6iT - 47T^{2} \) |
| 53 | \( 1 - 8.24iT - 53T^{2} \) |
| 59 | \( 1 - 11.9T + 59T^{2} \) |
| 61 | \( 1 - 8.10T + 61T^{2} \) |
| 67 | \( 1 + 6.24T + 67T^{2} \) |
| 71 | \( 1 + 12.2iT - 71T^{2} \) |
| 73 | \( 1 + 3.08iT - 73T^{2} \) |
| 79 | \( 1 - 12.4T + 79T^{2} \) |
| 83 | \( 1 + 4.71iT - 83T^{2} \) |
| 89 | \( 1 + 16.6T + 89T^{2} \) |
| 97 | \( 1 + 13.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.559265819530087211100029781322, −7.904024132828787331343861794117, −7.14622931142315751394809937059, −6.30974419787907786704196805414, −5.30215273185009316684525105932, −4.51799917464475203238237895549, −4.31756285043683327286969381693, −2.72635489573020620194601770187, −1.77353539771034145792166302182, −0.77131389546558420690160240205,
1.19826718851821747748104164374, 2.18018774917416114806963016768, 3.31464885647746528500727501516, 3.94570305511394097409104244136, 5.11737731406286715163862818677, 5.65507844009595802964616520789, 6.77314763134082511865433207179, 7.13444881332669220639219705353, 8.254192759282531533467104100442, 8.491978372856094870018480473118