Properties

Label 2-3168-88.43-c1-0-38
Degree $2$
Conductor $3168$
Sign $0.517 + 0.855i$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·5-s + 3.02·7-s + (2.33 + 2.35i)11-s − 1.32·13-s + 1.69i·17-s − 7.04i·19-s − 3.12i·23-s + 25-s + 1.54·29-s − 8.30i·31-s − 6.04i·35-s − 4.66i·37-s + 7.73i·41-s + 3.95i·43-s + 6i·47-s + ⋯
L(s)  = 1  − 0.894i·5-s + 1.14·7-s + (0.703 + 0.711i)11-s − 0.367·13-s + 0.411i·17-s − 1.61i·19-s − 0.651i·23-s + 0.200·25-s + 0.286·29-s − 1.49i·31-s − 1.02i·35-s − 0.766i·37-s + 1.20i·41-s + 0.603i·43-s + 0.875i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.517 + 0.855i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.517 + 0.855i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $0.517 + 0.855i$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3168} (2287, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ 0.517 + 0.855i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.190455927\)
\(L(\frac12)\) \(\approx\) \(2.190455927\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-2.33 - 2.35i)T \)
good5 \( 1 + 2iT - 5T^{2} \)
7 \( 1 - 3.02T + 7T^{2} \)
13 \( 1 + 1.32T + 13T^{2} \)
17 \( 1 - 1.69iT - 17T^{2} \)
19 \( 1 + 7.04iT - 19T^{2} \)
23 \( 1 + 3.12iT - 23T^{2} \)
29 \( 1 - 1.54T + 29T^{2} \)
31 \( 1 + 8.30iT - 31T^{2} \)
37 \( 1 + 4.66iT - 37T^{2} \)
41 \( 1 - 7.73iT - 41T^{2} \)
43 \( 1 - 3.95iT - 43T^{2} \)
47 \( 1 - 6iT - 47T^{2} \)
53 \( 1 - 8.24iT - 53T^{2} \)
59 \( 1 - 11.9T + 59T^{2} \)
61 \( 1 - 8.10T + 61T^{2} \)
67 \( 1 + 6.24T + 67T^{2} \)
71 \( 1 + 12.2iT - 71T^{2} \)
73 \( 1 + 3.08iT - 73T^{2} \)
79 \( 1 - 12.4T + 79T^{2} \)
83 \( 1 + 4.71iT - 83T^{2} \)
89 \( 1 + 16.6T + 89T^{2} \)
97 \( 1 + 13.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.559265819530087211100029781322, −7.904024132828787331343861794117, −7.14622931142315751394809937059, −6.30974419787907786704196805414, −5.30215273185009316684525105932, −4.51799917464475203238237895549, −4.31756285043683327286969381693, −2.72635489573020620194601770187, −1.77353539771034145792166302182, −0.77131389546558420690160240205, 1.19826718851821747748104164374, 2.18018774917416114806963016768, 3.31464885647746528500727501516, 3.94570305511394097409104244136, 5.11737731406286715163862818677, 5.65507844009595802964616520789, 6.77314763134082511865433207179, 7.13444881332669220639219705353, 8.254192759282531533467104100442, 8.491978372856094870018480473118

Graph of the $Z$-function along the critical line