L(s) = 1 | − 2i·5-s + 3.02·7-s + (2.33 + 2.35i)11-s − 1.32·13-s + 1.69i·17-s − 7.04i·19-s − 3.12i·23-s + 25-s + 1.54·29-s − 8.30i·31-s − 6.04i·35-s − 4.66i·37-s + 7.73i·41-s + 3.95i·43-s + 6i·47-s + ⋯ |
L(s) = 1 | − 0.894i·5-s + 1.14·7-s + (0.703 + 0.711i)11-s − 0.367·13-s + 0.411i·17-s − 1.61i·19-s − 0.651i·23-s + 0.200·25-s + 0.286·29-s − 1.49i·31-s − 1.02i·35-s − 0.766i·37-s + 1.20i·41-s + 0.603i·43-s + 0.875i·47-s + ⋯ |
Λ(s)=(=(3168s/2ΓC(s)L(s)(0.517+0.855i)Λ(2−s)
Λ(s)=(=(3168s/2ΓC(s+1/2)L(s)(0.517+0.855i)Λ(1−s)
Degree: |
2 |
Conductor: |
3168
= 25⋅32⋅11
|
Sign: |
0.517+0.855i
|
Analytic conductor: |
25.2966 |
Root analytic conductor: |
5.02957 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3168(2287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3168, ( :1/2), 0.517+0.855i)
|
Particular Values
L(1) |
≈ |
2.190455927 |
L(21) |
≈ |
2.190455927 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−2.33−2.35i)T |
good | 5 | 1+2iT−5T2 |
| 7 | 1−3.02T+7T2 |
| 13 | 1+1.32T+13T2 |
| 17 | 1−1.69iT−17T2 |
| 19 | 1+7.04iT−19T2 |
| 23 | 1+3.12iT−23T2 |
| 29 | 1−1.54T+29T2 |
| 31 | 1+8.30iT−31T2 |
| 37 | 1+4.66iT−37T2 |
| 41 | 1−7.73iT−41T2 |
| 43 | 1−3.95iT−43T2 |
| 47 | 1−6iT−47T2 |
| 53 | 1−8.24iT−53T2 |
| 59 | 1−11.9T+59T2 |
| 61 | 1−8.10T+61T2 |
| 67 | 1+6.24T+67T2 |
| 71 | 1+12.2iT−71T2 |
| 73 | 1+3.08iT−73T2 |
| 79 | 1−12.4T+79T2 |
| 83 | 1+4.71iT−83T2 |
| 89 | 1+16.6T+89T2 |
| 97 | 1+13.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.559265819530087211100029781322, −7.904024132828787331343861794117, −7.14622931142315751394809937059, −6.30974419787907786704196805414, −5.30215273185009316684525105932, −4.51799917464475203238237895549, −4.31756285043683327286969381693, −2.72635489573020620194601770187, −1.77353539771034145792166302182, −0.77131389546558420690160240205,
1.19826718851821747748104164374, 2.18018774917416114806963016768, 3.31464885647746528500727501516, 3.94570305511394097409104244136, 5.11737731406286715163862818677, 5.65507844009595802964616520789, 6.77314763134082511865433207179, 7.13444881332669220639219705353, 8.254192759282531533467104100442, 8.491978372856094870018480473118