Properties

Label 2-3192-3192.293-c0-0-1
Degree 22
Conductor 31923192
Sign 0.09770.995i-0.0977 - 0.995i
Analytic cond. 1.593011.59301
Root an. cond. 1.262141.26214
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (1.5 + 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s + 0.999·12-s + (−1.5 + 0.866i)13-s + (−0.5 + 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s − 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯
L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (1.5 + 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s + 0.999·12-s + (−1.5 + 0.866i)13-s + (−0.5 + 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s − 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯

Functional equation

Λ(s)=(3192s/2ΓC(s)L(s)=((0.09770.995i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3192s/2ΓC(s)L(s)=((0.09770.995i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 31923192    =    2337192^{3} \cdot 3 \cdot 7 \cdot 19
Sign: 0.09770.995i-0.0977 - 0.995i
Analytic conductor: 1.593011.59301
Root analytic conductor: 1.262141.26214
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3192(293,)\chi_{3192} (293, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3192, ( :0), 0.09770.995i)(2,\ 3192,\ (\ :0),\ -0.0977 - 0.995i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.83414768670.8341476867
L(12)L(\frac12) \approx 0.83414768670.8341476867
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
3 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
7 1+T 1 + T
19 1+(0.50.866i)T 1 + (0.5 - 0.866i)T
good5 1+(1.50.866i)T+(0.5+0.866i)T2 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2}
11 1+T2 1 + T^{2}
13 1+(1.50.866i)T+(0.50.866i)T2 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2}
17 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
23 1+(1.50.866i)T+(0.50.866i)T2 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2}
29 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
31 1+T2 1 + T^{2}
37 1+T2 1 + T^{2}
41 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
43 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
47 1+(0.5+0.866i)T2 1 + (-0.5 + 0.866i)T^{2}
53 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
59 1+(0.50.866i)T+(0.50.866i)T2 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2}
61 1+(0.50.866i)T+(0.5+0.866i)T2 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2}
67 1+(0.5+0.866i)T2 1 + (-0.5 + 0.866i)T^{2}
71 1+(0.5+0.866i)T+(0.50.866i)T2 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2}
73 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
79 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
83 1+1.73iTT2 1 + 1.73iT - T^{2}
89 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
97 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.651761870096336777678852755488, −8.857834216988361040129672692452, −7.23677279832285835682297373041, −6.30232489503217555916736865684, −5.99683365755137734581645831593, −5.25956555204983706503430516854, −4.29747229326049154964493192131, −3.48231288657808892139219937242, −2.61122308010183919382726456172, −1.86709166227319158341888201804, 0.40528198509220683181291794785, 2.18897756105296330703045774770, 2.78687064717018940671356240460, 4.35665576468890754379457018494, 5.23278290290801341763361311744, 5.59672456611350758674225639186, 6.46773586361200729411073917306, 6.76035619515725765372163340007, 7.81999388818909156422510957079, 8.445510600907515858122629948229

Graph of the ZZ-function along the critical line