L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (1.5 + 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s + 0.999·12-s + (−1.5 + 0.866i)13-s + (−0.5 + 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s − 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (1.5 + 0.866i)5-s + (0.499 + 0.866i)6-s − 7-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 0.866i)10-s + 0.999·12-s + (−1.5 + 0.866i)13-s + (−0.5 + 0.866i)14-s + (−1.5 + 0.866i)15-s + (−0.5 + 0.866i)16-s − 0.999·18-s + (−0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8341476867\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8341476867\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 1.73iT - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.651761870096336777678852755488, −8.857834216988361040129672692452, −7.23677279832285835682297373041, −6.30232489503217555916736865684, −5.99683365755137734581645831593, −5.25956555204983706503430516854, −4.29747229326049154964493192131, −3.48231288657808892139219937242, −2.61122308010183919382726456172, −1.86709166227319158341888201804,
0.40528198509220683181291794785, 2.18897756105296330703045774770, 2.78687064717018940671356240460, 4.35665576468890754379457018494, 5.23278290290801341763361311744, 5.59672456611350758674225639186, 6.46773586361200729411073917306, 6.76035619515725765372163340007, 7.81999388818909156422510957079, 8.445510600907515858122629948229