Properties

Label 3192.1.fm.c
Level 31923192
Weight 11
Character orbit 3192.fm
Analytic conductor 1.5931.593
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -56
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,1,Mod(293,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.293");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3192=233719 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3192.fm (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.593015520321.59301552032
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.209656254528.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ6q2ζ6q3+ζ62q4+(ζ62+1)q5ζ62q6q7q8+ζ62q9+(ζ6+1)q10+q12+(ζ61)q13++ζ6q98+O(q100) q + \zeta_{6} q^{2} - \zeta_{6} q^{3} + \zeta_{6}^{2} q^{4} + ( - \zeta_{6}^{2} + 1) q^{5} - \zeta_{6}^{2} q^{6} - q^{7} - q^{8} + \zeta_{6}^{2} q^{9} + (\zeta_{6} + 1) q^{10} + q^{12} + ( - \zeta_{6} - 1) q^{13} + \cdots + \zeta_{6} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q3q4+3q5+q62q72q8q9+3q10+2q123q13q143q15q162q18q19+q213q23+q24+2q25++q98+O(q100) 2 q + q^{2} - q^{3} - q^{4} + 3 q^{5} + q^{6} - 2 q^{7} - 2 q^{8} - q^{9} + 3 q^{10} + 2 q^{12} - 3 q^{13} - q^{14} - 3 q^{15} - q^{16} - 2 q^{18} - q^{19} + q^{21} - 3 q^{23} + q^{24} + 2 q^{25}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3192Z)×\left(\mathbb{Z}/3192\mathbb{Z}\right)^\times.

nn 799799 913913 10091009 15971597 21292129
χ(n)\chi(n) 11 1-1 ζ62-\zeta_{6}^{2} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
293.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 1.50000 + 0.866025i 0.500000 + 0.866025i −1.00000 −1.00000 −0.500000 0.866025i 1.50000 0.866025i
1133.1 0.500000 + 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 1.50000 0.866025i 0.500000 0.866025i −1.00000 −1.00000 −0.500000 + 0.866025i 1.50000 + 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by Q(14)\Q(\sqrt{-14})
57.f even 6 1 inner
3192.fm odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3192.1.fm.c yes 2
3.b odd 2 1 3192.1.fm.b yes 2
7.b odd 2 1 3192.1.fm.d yes 2
8.b even 2 1 3192.1.fm.d yes 2
19.d odd 6 1 3192.1.fm.b yes 2
21.c even 2 1 3192.1.fm.a 2
24.h odd 2 1 3192.1.fm.a 2
56.h odd 2 1 CM 3192.1.fm.c yes 2
57.f even 6 1 inner 3192.1.fm.c yes 2
133.p even 6 1 3192.1.fm.a 2
152.l odd 6 1 3192.1.fm.a 2
168.i even 2 1 3192.1.fm.b yes 2
399.q odd 6 1 3192.1.fm.d yes 2
456.v even 6 1 3192.1.fm.d yes 2
1064.cc even 6 1 3192.1.fm.b yes 2
3192.fm odd 6 1 inner 3192.1.fm.c yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3192.1.fm.a 2 21.c even 2 1
3192.1.fm.a 2 24.h odd 2 1
3192.1.fm.a 2 133.p even 6 1
3192.1.fm.a 2 152.l odd 6 1
3192.1.fm.b yes 2 3.b odd 2 1
3192.1.fm.b yes 2 19.d odd 6 1
3192.1.fm.b yes 2 168.i even 2 1
3192.1.fm.b yes 2 1064.cc even 6 1
3192.1.fm.c yes 2 1.a even 1 1 trivial
3192.1.fm.c yes 2 56.h odd 2 1 CM
3192.1.fm.c yes 2 57.f even 6 1 inner
3192.1.fm.c yes 2 3192.fm odd 6 1 inner
3192.1.fm.d yes 2 7.b odd 2 1
3192.1.fm.d yes 2 8.b even 2 1
3192.1.fm.d yes 2 399.q odd 6 1
3192.1.fm.d yes 2 456.v even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3192,[χ])S_{1}^{\mathrm{new}}(3192, [\chi]):

T523T5+3 T_{5}^{2} - 3T_{5} + 3 Copy content Toggle raw display
T132+3T13+3 T_{13}^{2} + 3T_{13} + 3 Copy content Toggle raw display
T232+3T23+3 T_{23}^{2} + 3T_{23} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
55 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
77 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2323 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
6161 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+3 T^{2} + 3 Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less