Properties

Label 3192.1.fm.c
Level $3192$
Weight $1$
Character orbit 3192.fm
Analytic conductor $1.593$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -56
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3192,1,Mod(293,3192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3192, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3192.293");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3192 = 2^{3} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3192.fm (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59301552032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.209656254528.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} - \zeta_{6} q^{3} + \zeta_{6}^{2} q^{4} + ( - \zeta_{6}^{2} + 1) q^{5} - \zeta_{6}^{2} q^{6} - q^{7} - q^{8} + \zeta_{6}^{2} q^{9} + (\zeta_{6} + 1) q^{10} + q^{12} + ( - \zeta_{6} - 1) q^{13} + \cdots + \zeta_{6} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} - q^{4} + 3 q^{5} + q^{6} - 2 q^{7} - 2 q^{8} - q^{9} + 3 q^{10} + 2 q^{12} - 3 q^{13} - q^{14} - 3 q^{15} - q^{16} - 2 q^{18} - q^{19} + q^{21} - 3 q^{23} + q^{24} + 2 q^{25}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3192\mathbb{Z}\right)^\times\).

\(n\) \(799\) \(913\) \(1009\) \(1597\) \(2129\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{6}^{2}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
293.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 1.50000 + 0.866025i 0.500000 + 0.866025i −1.00000 −1.00000 −0.500000 0.866025i 1.50000 0.866025i
1133.1 0.500000 + 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 1.50000 0.866025i 0.500000 0.866025i −1.00000 −1.00000 −0.500000 + 0.866025i 1.50000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by \(\Q(\sqrt{-14}) \)
57.f even 6 1 inner
3192.fm odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3192.1.fm.c yes 2
3.b odd 2 1 3192.1.fm.b yes 2
7.b odd 2 1 3192.1.fm.d yes 2
8.b even 2 1 3192.1.fm.d yes 2
19.d odd 6 1 3192.1.fm.b yes 2
21.c even 2 1 3192.1.fm.a 2
24.h odd 2 1 3192.1.fm.a 2
56.h odd 2 1 CM 3192.1.fm.c yes 2
57.f even 6 1 inner 3192.1.fm.c yes 2
133.p even 6 1 3192.1.fm.a 2
152.l odd 6 1 3192.1.fm.a 2
168.i even 2 1 3192.1.fm.b yes 2
399.q odd 6 1 3192.1.fm.d yes 2
456.v even 6 1 3192.1.fm.d yes 2
1064.cc even 6 1 3192.1.fm.b yes 2
3192.fm odd 6 1 inner 3192.1.fm.c yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3192.1.fm.a 2 21.c even 2 1
3192.1.fm.a 2 24.h odd 2 1
3192.1.fm.a 2 133.p even 6 1
3192.1.fm.a 2 152.l odd 6 1
3192.1.fm.b yes 2 3.b odd 2 1
3192.1.fm.b yes 2 19.d odd 6 1
3192.1.fm.b yes 2 168.i even 2 1
3192.1.fm.b yes 2 1064.cc even 6 1
3192.1.fm.c yes 2 1.a even 1 1 trivial
3192.1.fm.c yes 2 56.h odd 2 1 CM
3192.1.fm.c yes 2 57.f even 6 1 inner
3192.1.fm.c yes 2 3192.fm odd 6 1 inner
3192.1.fm.d yes 2 7.b odd 2 1
3192.1.fm.d yes 2 8.b even 2 1
3192.1.fm.d yes 2 399.q odd 6 1
3192.1.fm.d yes 2 456.v even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3192, [\chi])\):

\( T_{5}^{2} - 3T_{5} + 3 \) Copy content Toggle raw display
\( T_{13}^{2} + 3T_{13} + 3 \) Copy content Toggle raw display
\( T_{23}^{2} + 3T_{23} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$61$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 3 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less