L(s) = 1 | + 2-s − i·3-s + 4-s + 2i·5-s − i·6-s + 7-s + 8-s − 9-s + 2i·10-s − i·12-s − 2i·13-s + 14-s + 2·15-s + 16-s − 18-s + i·19-s + ⋯ |
L(s) = 1 | + 2-s − i·3-s + 4-s + 2i·5-s − i·6-s + 7-s + 8-s − 9-s + 2i·10-s − i·12-s − 2i·13-s + 14-s + 2·15-s + 16-s − 18-s + i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.626903433\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.626903433\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + iT \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 - 2iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + 2iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 2T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 2iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.268615859376721238835279066319, −7.77890167391301296388048214636, −7.33282346279644752314708031636, −6.55370510825433869526027986228, −5.80996117496152935740645317042, −5.39344144220987535587836465336, −3.93919233747926946379096691669, −3.06905352953739779879424344563, −2.58487375487441571902150229378, −1.57876075143363064038193750824,
1.40277724394777344256169987574, 2.29589231477238962021497273116, 3.82072583867059722238170886956, 4.50017289460094680775993294829, 4.72465966697653627683405540611, 5.40744082925062587124427262978, 6.24256198640426821314259863087, 7.38131304902125344300158087262, 8.264928951684689707314588135520, 8.967346389423622737468225852640