L(s) = 1 | + 2-s − i·3-s + 4-s + 2i·5-s − i·6-s + 7-s + 8-s − 9-s + 2i·10-s − i·12-s − 2i·13-s + 14-s + 2·15-s + 16-s − 18-s + i·19-s + ⋯ |
L(s) = 1 | + 2-s − i·3-s + 4-s + 2i·5-s − i·6-s + 7-s + 8-s − 9-s + 2i·10-s − i·12-s − 2i·13-s + 14-s + 2·15-s + 16-s − 18-s + i·19-s + ⋯ |
Λ(s)=(=(3192s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3192s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3192
= 23⋅3⋅7⋅19
|
Sign: |
1
|
Analytic conductor: |
1.59301 |
Root analytic conductor: |
1.26214 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3192(797,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3192, ( :0), 1)
|
Particular Values
L(21) |
≈ |
2.626903433 |
L(21) |
≈ |
2.626903433 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+iT |
| 7 | 1−T |
| 19 | 1−iT |
good | 5 | 1−2iT−T2 |
| 11 | 1+T2 |
| 13 | 1+2iT−T2 |
| 17 | 1+T2 |
| 23 | 1−T2 |
| 29 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1−T2 |
| 59 | 1+T2 |
| 61 | 1+T2 |
| 67 | 1+T2 |
| 71 | 1+2T+T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−2iT−T2 |
| 89 | 1−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.268615859376721238835279066319, −7.77890167391301296388048214636, −7.33282346279644752314708031636, −6.55370510825433869526027986228, −5.80996117496152935740645317042, −5.39344144220987535587836465336, −3.93919233747926946379096691669, −3.06905352953739779879424344563, −2.58487375487441571902150229378, −1.57876075143363064038193750824,
1.40277724394777344256169987574, 2.29589231477238962021497273116, 3.82072583867059722238170886956, 4.50017289460094680775993294829, 4.72465966697653627683405540611, 5.40744082925062587124427262978, 6.24256198640426821314259863087, 7.38131304902125344300158087262, 8.264928951684689707314588135520, 8.967346389423622737468225852640