L(s) = 1 | − 1.41i·3-s − 4.24·7-s + 0.999·9-s − 5.65i·11-s − 2i·13-s − 6·17-s − 2.82i·19-s + 6i·21-s + 7.07·23-s − 5.65i·27-s + 4i·29-s + 2.82·31-s − 8.00·33-s − 2i·37-s − 2.82·39-s + ⋯ |
L(s) = 1 | − 0.816i·3-s − 1.60·7-s + 0.333·9-s − 1.70i·11-s − 0.554i·13-s − 1.45·17-s − 0.648i·19-s + 1.30i·21-s + 1.47·23-s − 1.08i·27-s + 0.742i·29-s + 0.508·31-s − 1.39·33-s − 0.328i·37-s − 0.452·39-s + ⋯ |
Λ(s)=(=(3200s/2ΓC(s)L(s)(−0.707−0.707i)Λ(2−s)
Λ(s)=(=(3200s/2ΓC(s+1/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
3200
= 27⋅52
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
25.5521 |
Root analytic conductor: |
5.05491 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3200(1601,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3200, ( :1/2), −0.707−0.707i)
|
Particular Values
L(1) |
≈ |
0.4869316889 |
L(21) |
≈ |
0.4869316889 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+1.41iT−3T2 |
| 7 | 1+4.24T+7T2 |
| 11 | 1+5.65iT−11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1+6T+17T2 |
| 19 | 1+2.82iT−19T2 |
| 23 | 1−7.07T+23T2 |
| 29 | 1−4iT−29T2 |
| 31 | 1−2.82T+31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+8T+41T2 |
| 43 | 1+1.41iT−43T2 |
| 47 | 1+1.41T+47T2 |
| 53 | 1−2iT−53T2 |
| 59 | 1+2.82iT−59T2 |
| 61 | 1−14iT−61T2 |
| 67 | 1−4.24iT−67T2 |
| 71 | 1+2.82T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1+16.9T+79T2 |
| 83 | 1−12.7iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+10T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.357979040210222510042235318109, −7.06595783243019650090753817116, −6.85587097202252289816848869102, −6.13750876012166040545444477804, −5.34875685075280458305508789334, −4.15549126709171501446856606202, −3.14214245085775495247024182010, −2.66687396725846354100161100346, −1.11046800699204804839025176366, −0.16232167247119800372126578819,
1.75155587832882000337387975984, 2.82336084462008636173033952304, 3.77263282140169461112918312702, 4.46536479420125400518651568974, 5.05221487771172827511651040678, 6.38784479031823761813414918640, 6.77468514865452467429312961780, 7.41834551537185633111699430467, 8.682859984679428020459946166776, 9.352974750745270284735656756354