Properties

Label 2-3200-8.5-c1-0-73
Degree $2$
Conductor $3200$
Sign $-0.707 - 0.707i$
Analytic cond. $25.5521$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·3-s − 4.24·7-s + 0.999·9-s − 5.65i·11-s − 2i·13-s − 6·17-s − 2.82i·19-s + 6i·21-s + 7.07·23-s − 5.65i·27-s + 4i·29-s + 2.82·31-s − 8.00·33-s − 2i·37-s − 2.82·39-s + ⋯
L(s)  = 1  − 0.816i·3-s − 1.60·7-s + 0.333·9-s − 1.70i·11-s − 0.554i·13-s − 1.45·17-s − 0.648i·19-s + 1.30i·21-s + 1.47·23-s − 1.08i·27-s + 0.742i·29-s + 0.508·31-s − 1.39·33-s − 0.328i·37-s − 0.452·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3200\)    =    \(2^{7} \cdot 5^{2}\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(25.5521\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3200} (1601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3200,\ (\ :1/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4869316889\)
\(L(\frac12)\) \(\approx\) \(0.4869316889\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 1.41iT - 3T^{2} \)
7 \( 1 + 4.24T + 7T^{2} \)
11 \( 1 + 5.65iT - 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 + 2.82iT - 19T^{2} \)
23 \( 1 - 7.07T + 23T^{2} \)
29 \( 1 - 4iT - 29T^{2} \)
31 \( 1 - 2.82T + 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 + 8T + 41T^{2} \)
43 \( 1 + 1.41iT - 43T^{2} \)
47 \( 1 + 1.41T + 47T^{2} \)
53 \( 1 - 2iT - 53T^{2} \)
59 \( 1 + 2.82iT - 59T^{2} \)
61 \( 1 - 14iT - 61T^{2} \)
67 \( 1 - 4.24iT - 67T^{2} \)
71 \( 1 + 2.82T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 + 16.9T + 79T^{2} \)
83 \( 1 - 12.7iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.357979040210222510042235318109, −7.06595783243019650090753817116, −6.85587097202252289816848869102, −6.13750876012166040545444477804, −5.34875685075280458305508789334, −4.15549126709171501446856606202, −3.14214245085775495247024182010, −2.66687396725846354100161100346, −1.11046800699204804839025176366, −0.16232167247119800372126578819, 1.75155587832882000337387975984, 2.82336084462008636173033952304, 3.77263282140169461112918312702, 4.46536479420125400518651568974, 5.05221487771172827511651040678, 6.38784479031823761813414918640, 6.77468514865452467429312961780, 7.41834551537185633111699430467, 8.682859984679428020459946166776, 9.352974750745270284735656756354

Graph of the $Z$-function along the critical line