L(s) = 1 | + (−1.75 + 0.951i)2-s + (2.19 − 3.34i)4-s + 1.86·5-s − 11.3i·7-s + (−0.672 + 7.97i)8-s + (−3.27 + 1.77i)10-s − 5.87i·11-s − 13.9·13-s + (10.7 + 19.9i)14-s + (−6.39 − 14.6i)16-s − 11.0·17-s + 9.34i·19-s + (4.08 − 6.23i)20-s + (5.58 + 10.3i)22-s + 30.4i·23-s + ⋯ |
L(s) = 1 | + (−0.879 + 0.475i)2-s + (0.547 − 0.836i)4-s + 0.372·5-s − 1.61i·7-s + (−0.0840 + 0.996i)8-s + (−0.327 + 0.177i)10-s − 0.533i·11-s − 1.07·13-s + (0.768 + 1.42i)14-s + (−0.399 − 0.916i)16-s − 0.651·17-s + 0.491i·19-s + (0.204 − 0.311i)20-s + (0.253 + 0.469i)22-s + 1.32i·23-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)(−0.547+0.836i)Λ(3−s)
Λ(s)=(=(324s/2ΓC(s+1)L(s)(−0.547+0.836i)Λ(1−s)
Degree: |
2 |
Conductor: |
324
= 22⋅34
|
Sign: |
−0.547+0.836i
|
Analytic conductor: |
8.82836 |
Root analytic conductor: |
2.97125 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ324(163,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 324, ( :1), −0.547+0.836i)
|
Particular Values
L(23) |
≈ |
0.266629−0.493259i |
L(21) |
≈ |
0.266629−0.493259i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.75−0.951i)T |
| 3 | 1 |
good | 5 | 1−1.86T+25T2 |
| 7 | 1+11.3iT−49T2 |
| 11 | 1+5.87iT−121T2 |
| 13 | 1+13.9T+169T2 |
| 17 | 1+11.0T+289T2 |
| 19 | 1−9.34iT−361T2 |
| 23 | 1−30.4iT−529T2 |
| 29 | 1+45.5T+841T2 |
| 31 | 1+49.5iT−961T2 |
| 37 | 1−48.9T+1.36e3T2 |
| 41 | 1+14.8T+1.68e3T2 |
| 43 | 1−5.02iT−1.84e3T2 |
| 47 | 1+83.1iT−2.20e3T2 |
| 53 | 1+53.6T+2.80e3T2 |
| 59 | 1+98.3iT−3.48e3T2 |
| 61 | 1−20.4T+3.72e3T2 |
| 67 | 1−17.2iT−4.48e3T2 |
| 71 | 1+52.6iT−5.04e3T2 |
| 73 | 1−98.1T+5.32e3T2 |
| 79 | 1+3.04iT−6.24e3T2 |
| 83 | 1−101.iT−6.88e3T2 |
| 89 | 1−17.0T+7.92e3T2 |
| 97 | 1+52.0T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94968329264046178591445382318, −9.824280821157405252839843939859, −9.525154730901921000888313431703, −7.945455202210446214518830502309, −7.45595270104995329475635362788, −6.41463769323066282772977344546, −5.30736832316189191765983893085, −3.85706678971392270971216109182, −1.93680067336456159358142846598, −0.32708483547886811856257630468,
2.01523218612997633520314688167, 2.77166809019414251983167633317, 4.64543502249655902662061803380, 5.97151258498658838714630486341, 7.05752672669363682068483504439, 8.183415524955897942580848246430, 9.163861386165255313695121602393, 9.589288043616126533118025612231, 10.73367044432997071754465214587, 11.69343155099150540060037288534