Properties

Label 2-18e2-4.3-c2-0-36
Degree $2$
Conductor $324$
Sign $-0.547 + 0.836i$
Analytic cond. $8.82836$
Root an. cond. $2.97125$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.75 + 0.951i)2-s + (2.19 − 3.34i)4-s + 1.86·5-s − 11.3i·7-s + (−0.672 + 7.97i)8-s + (−3.27 + 1.77i)10-s − 5.87i·11-s − 13.9·13-s + (10.7 + 19.9i)14-s + (−6.39 − 14.6i)16-s − 11.0·17-s + 9.34i·19-s + (4.08 − 6.23i)20-s + (5.58 + 10.3i)22-s + 30.4i·23-s + ⋯
L(s)  = 1  + (−0.879 + 0.475i)2-s + (0.547 − 0.836i)4-s + 0.372·5-s − 1.61i·7-s + (−0.0840 + 0.996i)8-s + (−0.327 + 0.177i)10-s − 0.533i·11-s − 1.07·13-s + (0.768 + 1.42i)14-s + (−0.399 − 0.916i)16-s − 0.651·17-s + 0.491i·19-s + (0.204 − 0.311i)20-s + (0.253 + 0.469i)22-s + 1.32i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.547 + 0.836i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.547 + 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $-0.547 + 0.836i$
Analytic conductor: \(8.82836\)
Root analytic conductor: \(2.97125\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (163, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :1),\ -0.547 + 0.836i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.266629 - 0.493259i\)
\(L(\frac12)\) \(\approx\) \(0.266629 - 0.493259i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.75 - 0.951i)T \)
3 \( 1 \)
good5 \( 1 - 1.86T + 25T^{2} \)
7 \( 1 + 11.3iT - 49T^{2} \)
11 \( 1 + 5.87iT - 121T^{2} \)
13 \( 1 + 13.9T + 169T^{2} \)
17 \( 1 + 11.0T + 289T^{2} \)
19 \( 1 - 9.34iT - 361T^{2} \)
23 \( 1 - 30.4iT - 529T^{2} \)
29 \( 1 + 45.5T + 841T^{2} \)
31 \( 1 + 49.5iT - 961T^{2} \)
37 \( 1 - 48.9T + 1.36e3T^{2} \)
41 \( 1 + 14.8T + 1.68e3T^{2} \)
43 \( 1 - 5.02iT - 1.84e3T^{2} \)
47 \( 1 + 83.1iT - 2.20e3T^{2} \)
53 \( 1 + 53.6T + 2.80e3T^{2} \)
59 \( 1 + 98.3iT - 3.48e3T^{2} \)
61 \( 1 - 20.4T + 3.72e3T^{2} \)
67 \( 1 - 17.2iT - 4.48e3T^{2} \)
71 \( 1 + 52.6iT - 5.04e3T^{2} \)
73 \( 1 - 98.1T + 5.32e3T^{2} \)
79 \( 1 + 3.04iT - 6.24e3T^{2} \)
83 \( 1 - 101. iT - 6.88e3T^{2} \)
89 \( 1 - 17.0T + 7.92e3T^{2} \)
97 \( 1 + 52.0T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94968329264046178591445382318, −9.824280821157405252839843939859, −9.525154730901921000888313431703, −7.945455202210446214518830502309, −7.45595270104995329475635362788, −6.41463769323066282772977344546, −5.30736832316189191765983893085, −3.85706678971392270971216109182, −1.93680067336456159358142846598, −0.32708483547886811856257630468, 2.01523218612997633520314688167, 2.77166809019414251983167633317, 4.64543502249655902662061803380, 5.97151258498658838714630486341, 7.05752672669363682068483504439, 8.183415524955897942580848246430, 9.163861386165255313695121602393, 9.589288043616126533118025612231, 10.73367044432997071754465214587, 11.69343155099150540060037288534

Graph of the $Z$-function along the critical line