Properties

Label 324.3.d.e
Level $324$
Weight $3$
Character orbit 324.d
Analytic conductor $8.828$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [324,3,Mod(163,324)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(324, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("324.163");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3636603.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 12x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} - \beta_1 q^{4} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{5} + (\beta_{4} - \beta_1) q^{7} + ( - \beta_{4} + \beta_{3} - \beta_{2} + \cdots - 1) q^{8} + ( - \beta_{5} - \beta_{4} + 2) q^{10}+ \cdots + (2 \beta_{5} + 2 \beta_{4} + 5 \beta_{3} + \cdots + 76) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 3 q^{4} - 2 q^{5} - 7 q^{8} + 9 q^{10} + 6 q^{13} - 15 q^{16} + 10 q^{17} + 67 q^{20} + 48 q^{22} + 73 q^{26} - 48 q^{28} + 22 q^{29} - 31 q^{32} + 81 q^{34} + 54 q^{37} - 168 q^{38} - 81 q^{40}+ \cdots + 407 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 8x^{4} + 12x^{2} + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + \nu^{4} + 9\nu^{3} + 5\nu^{2} + 17\nu + 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{5} + 8\nu^{3} + \nu^{2} + 12\nu + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - \nu^{4} + 7\nu^{3} - 7\nu^{2} + 7\nu - 5 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5\nu^{5} + \nu^{4} + 37\nu^{3} + 5\nu^{2} + 33\nu + 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} - 2\nu^{4} - 6\nu^{3} - 13\nu^{2} - 2\nu - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} - 2\beta_{4} + 4\beta_{3} + \beta_{2} + 2\beta _1 - 1 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} - \beta _1 - 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{5} + 5\beta_{4} - 13\beta_{3} - \beta_{2} - 2\beta _1 + 1 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{5} + 10\beta_{3} - 13\beta_{2} + 14\beta _1 + 49 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -26\beta_{5} - 28\beta_{4} + 83\beta_{3} + 5\beta_{2} + 7\beta _1 - 5 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
1.25235i
1.25235i
2.47367i
2.47367i
0.559107i
0.559107i
−1.75941 0.951043i 0 2.19104 + 3.34655i 1.86325 0 11.3183i −0.672219 7.97171i 0 −3.27823 1.77203i
163.2 −1.75941 + 0.951043i 0 2.19104 3.34655i 1.86325 0 11.3183i −0.672219 + 7.97171i 0 −3.27823 + 1.77203i
163.3 −0.195350 1.99044i 0 −3.92368 + 0.777662i −7.23805 0 6.88025i 2.31438 + 7.65792i 0 1.41395 + 14.4069i
163.4 −0.195350 + 1.99044i 0 −3.92368 0.777662i −7.23805 0 6.88025i 2.31438 7.65792i 0 1.41395 14.4069i
163.5 1.45476 1.37247i 0 0.232642 3.99323i 4.37480 0 2.13525i −5.14216 6.12848i 0 6.36427 6.00429i
163.6 1.45476 + 1.37247i 0 0.232642 + 3.99323i 4.37480 0 2.13525i −5.14216 + 6.12848i 0 6.36427 + 6.00429i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 163.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.3.d.e 6
3.b odd 2 1 324.3.d.f yes 6
4.b odd 2 1 inner 324.3.d.e 6
9.c even 3 2 324.3.f.r 12
9.d odd 6 2 324.3.f.q 12
12.b even 2 1 324.3.d.f yes 6
36.f odd 6 2 324.3.f.r 12
36.h even 6 2 324.3.f.q 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
324.3.d.e 6 1.a even 1 1 trivial
324.3.d.e 6 4.b odd 2 1 inner
324.3.d.f yes 6 3.b odd 2 1
324.3.d.f yes 6 12.b even 2 1
324.3.f.q 12 9.d odd 6 2
324.3.f.q 12 36.h even 6 2
324.3.f.r 12 9.c even 3 2
324.3.f.r 12 36.f odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + T_{5}^{2} - 37T_{5} + 59 \) acting on \(S_{3}^{\mathrm{new}}(324, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} + \cdots + 64 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T^{3} + T^{2} - 37 T + 59)^{2} \) Copy content Toggle raw display
$7$ \( T^{6} + 180 T^{4} + \cdots + 27648 \) Copy content Toggle raw display
$11$ \( T^{6} + 516 T^{4} + \cdots + 1769472 \) Copy content Toggle raw display
$13$ \( (T^{3} - 3 T^{2} + \cdots + 991)^{2} \) Copy content Toggle raw display
$17$ \( (T^{3} - 5 T^{2} + \cdots + 233)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 1476 T^{4} + \cdots + 20155392 \) Copy content Toggle raw display
$23$ \( T^{6} + 2868 T^{4} + \cdots + 425115648 \) Copy content Toggle raw display
$29$ \( (T^{3} - 11 T^{2} + \cdots + 32519)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 5376 T^{4} + \cdots + 7077888 \) Copy content Toggle raw display
$37$ \( (T^{3} - 27 T^{2} + \cdots + 144607)^{2} \) Copy content Toggle raw display
$41$ \( (T^{3} + 46 T^{2} + \cdots - 21976)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 6372 T^{4} + \cdots + 204484608 \) Copy content Toggle raw display
$47$ \( T^{6} + 8208 T^{4} + \cdots + 743620608 \) Copy content Toggle raw display
$53$ \( (T^{3} + 58 T^{2} + \cdots - 5128)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 15635054592 \) Copy content Toggle raw display
$61$ \( (T^{3} - 27 T^{2} + \cdots + 101191)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 12897487872 \) Copy content Toggle raw display
$71$ \( T^{6} + 8532 T^{4} + \cdots + 808455168 \) Copy content Toggle raw display
$73$ \( (T^{3} + 39 T^{2} + \cdots - 447851)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + 7764 T^{4} + \cdots + 113246208 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 900806787072 \) Copy content Toggle raw display
$89$ \( (T^{3} - 125 T^{2} + \cdots + 107777)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} + 102 T^{2} + \cdots - 369272)^{2} \) Copy content Toggle raw display
show more
show less