L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s − 0.999·10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)20-s + (−0.499 + 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + (0.5 + 0.866i)29-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s − 0.999·10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)20-s + (−0.499 + 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + (0.5 + 0.866i)29-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(−0.984+0.173i)Λ(1−s)
Λ(s)=(=(3240s/2ΓC(s)L(s)(−0.984+0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
−0.984+0.173i
|
Analytic conductor: |
1.61697 |
Root analytic conductor: |
1.27160 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :0), −0.984+0.173i)
|
Particular Values
L(21) |
≈ |
1.123871813 |
L(21) |
≈ |
1.123871813 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 17 | 1−T+T2 |
| 19 | 1−T2 |
| 23 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+2T+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.151249437841922681145230368014, −8.199630352896947043010679864993, −7.51884823665551572020554574559, −6.96776127452110724148730143219, −6.44525647106268202295484074576, −5.45326559416163228544252583361, −4.64231365639207788635566454689, −3.82692719228846909837839356870, −3.18297503559046341730402291264, −1.95712690178876785351690882242,
0.57968034872883906694187882052, 1.64134411004416809183873858310, 3.01539536230056019024095962902, 3.57046981248565124439813858206, 4.56164372473304840249343175666, 5.17807948522031802136723805143, 5.90736231249379593415394111778, 6.78620523954121927844545648154, 8.145273314305044598185963799598, 8.328841432101310499782599272380