L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s − 0.999·10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)20-s + (−0.499 + 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + (0.5 + 0.866i)29-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s − 0.999·10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)20-s + (−0.499 + 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + (0.5 + 0.866i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.123871813\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.123871813\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 2T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.151249437841922681145230368014, −8.199630352896947043010679864993, −7.51884823665551572020554574559, −6.96776127452110724148730143219, −6.44525647106268202295484074576, −5.45326559416163228544252583361, −4.64231365639207788635566454689, −3.82692719228846909837839356870, −3.18297503559046341730402291264, −1.95712690178876785351690882242,
0.57968034872883906694187882052, 1.64134411004416809183873858310, 3.01539536230056019024095962902, 3.57046981248565124439813858206, 4.56164372473304840249343175666, 5.17807948522031802136723805143, 5.90736231249379593415394111778, 6.78620523954121927844545648154, 8.145273314305044598185963799598, 8.328841432101310499782599272380