Properties

Label 2-3240-360.149-c0-0-3
Degree $2$
Conductor $3240$
Sign $-0.984 + 0.173i$
Analytic cond. $1.61697$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s − 0.999·10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)20-s + (−0.499 + 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + (0.5 + 0.866i)29-s + ⋯
L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s − 0.999·8-s − 0.999·10-s + (0.5 + 0.866i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)20-s + (−0.499 + 0.866i)22-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s − 0.999·26-s + (0.5 + 0.866i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $-0.984 + 0.173i$
Analytic conductor: \(1.61697\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3240} (1349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :0),\ -0.984 + 0.173i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.123871813\)
\(L(\frac12)\) \(\approx\) \(1.123871813\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 \)
5 \( 1 + (0.5 - 0.866i)T \)
good7 \( 1 + (0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
17 \( 1 - T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
37 \( 1 + 2T + T^{2} \)
41 \( 1 + (0.5 + 0.866i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
47 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 - 0.866i)T^{2} \)
67 \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
83 \( 1 + (0.5 - 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.151249437841922681145230368014, −8.199630352896947043010679864993, −7.51884823665551572020554574559, −6.96776127452110724148730143219, −6.44525647106268202295484074576, −5.45326559416163228544252583361, −4.64231365639207788635566454689, −3.82692719228846909837839356870, −3.18297503559046341730402291264, −1.95712690178876785351690882242, 0.57968034872883906694187882052, 1.64134411004416809183873858310, 3.01539536230056019024095962902, 3.57046981248565124439813858206, 4.56164372473304840249343175666, 5.17807948522031802136723805143, 5.90736231249379593415394111778, 6.78620523954121927844545648154, 8.145273314305044598185963799598, 8.328841432101310499782599272380

Graph of the $Z$-function along the critical line