Properties

Label 3240.1.bh.c
Level 32403240
Weight 11
Character orbit 3240.bh
Analytic conductor 1.6171.617
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -120
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(269,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3240.bh (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.616970640931.61697064093
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1080)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.1080.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ6q2+ζ62q4+ζ62q5q8q10+ζ6q11+ζ62q13ζ6q16+q17ζ6q20+ζ62q22+ζ62q23+q98+O(q100) q + \zeta_{6} q^{2} + \zeta_{6}^{2} q^{4} + \zeta_{6}^{2} q^{5} - q^{8} - q^{10} + \zeta_{6} q^{11} + \zeta_{6}^{2} q^{13} - \zeta_{6} q^{16} + q^{17} - \zeta_{6} q^{20} + \zeta_{6}^{2} q^{22} + \zeta_{6}^{2} q^{23} + \cdots - q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q4q52q82q10+q11q13q16+2q17q20q22q23q252q26+q29+q31+q32+q344q37+q40+2q98+O(q100) 2 q + q^{2} - q^{4} - q^{5} - 2 q^{8} - 2 q^{10} + q^{11} - q^{13} - q^{16} + 2 q^{17} - q^{20} - q^{22} - q^{23} - q^{25} - 2 q^{26} + q^{29} + q^{31} + q^{32} + q^{34} - 4 q^{37} + q^{40}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3240Z)×\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times.

nn 12971297 16211621 24312431 31613161
χ(n)\chi(n) 1-1 1-1 11 ζ62-\zeta_{6}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
269.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 0.866025i 0 −0.500000 0.866025i −0.500000 0.866025i 0 0 −1.00000 0 −1.00000
1349.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −0.500000 + 0.866025i 0 0 −1.00000 0 −1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
120.i odd 2 1 CM by Q(30)\Q(\sqrt{-30})
9.c even 3 1 inner
360.bh odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.1.bh.c 2
3.b odd 2 1 3240.1.bh.b 2
5.b even 2 1 3240.1.bh.a 2
8.b even 2 1 3240.1.bh.d 2
9.c even 3 1 1080.1.i.b yes 1
9.c even 3 1 inner 3240.1.bh.c 2
9.d odd 6 1 1080.1.i.c yes 1
9.d odd 6 1 3240.1.bh.b 2
15.d odd 2 1 3240.1.bh.d 2
24.h odd 2 1 3240.1.bh.a 2
40.f even 2 1 3240.1.bh.b 2
45.h odd 6 1 1080.1.i.a 1
45.h odd 6 1 3240.1.bh.d 2
45.j even 6 1 1080.1.i.d yes 1
45.j even 6 1 3240.1.bh.a 2
72.j odd 6 1 1080.1.i.d yes 1
72.j odd 6 1 3240.1.bh.a 2
72.n even 6 1 1080.1.i.a 1
72.n even 6 1 3240.1.bh.d 2
120.i odd 2 1 CM 3240.1.bh.c 2
360.bh odd 6 1 1080.1.i.b yes 1
360.bh odd 6 1 inner 3240.1.bh.c 2
360.bk even 6 1 1080.1.i.c yes 1
360.bk even 6 1 3240.1.bh.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.1.i.a 1 45.h odd 6 1
1080.1.i.a 1 72.n even 6 1
1080.1.i.b yes 1 9.c even 3 1
1080.1.i.b yes 1 360.bh odd 6 1
1080.1.i.c yes 1 9.d odd 6 1
1080.1.i.c yes 1 360.bk even 6 1
1080.1.i.d yes 1 45.j even 6 1
1080.1.i.d yes 1 72.j odd 6 1
3240.1.bh.a 2 5.b even 2 1
3240.1.bh.a 2 24.h odd 2 1
3240.1.bh.a 2 45.j even 6 1
3240.1.bh.a 2 72.j odd 6 1
3240.1.bh.b 2 3.b odd 2 1
3240.1.bh.b 2 9.d odd 6 1
3240.1.bh.b 2 40.f even 2 1
3240.1.bh.b 2 360.bk even 6 1
3240.1.bh.c 2 1.a even 1 1 trivial
3240.1.bh.c 2 9.c even 3 1 inner
3240.1.bh.c 2 120.i odd 2 1 CM
3240.1.bh.c 2 360.bh odd 6 1 inner
3240.1.bh.d 2 8.b even 2 1
3240.1.bh.d 2 15.d odd 2 1
3240.1.bh.d 2 45.h odd 6 1
3240.1.bh.d 2 72.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3240,[χ])S_{1}^{\mathrm{new}}(3240, [\chi]):

T7 T_{7} Copy content Toggle raw display
T112T11+1 T_{11}^{2} - T_{11} + 1 Copy content Toggle raw display
T132+T13+1 T_{13}^{2} + T_{13} + 1 Copy content Toggle raw display
T171 T_{17} - 1 Copy content Toggle raw display
T61 T_{61} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1313 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1717 (T1)2 (T - 1)^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2929 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
3131 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
3737 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
4747 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2+2T+4 T^{2} + 2T + 4 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less