Properties

Label 1080.1.i.b
Level 10801080
Weight 11
Character orbit 1080.i
Self dual yes
Analytic conductor 0.5390.539
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -120
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,1,Mod(269,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1080=23335 1080 = 2^{3} \cdot 3^{3} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1080.i (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.5389902136440.538990213644
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.1080.1
Artin image: D6D_6
Artin field: Galois closure of 6.2.5832000.1
Stark unit: Root of x687x5+1068x45609x3+1068x287x+1x^{6} - 87x^{5} + 1068x^{4} - 5609x^{3} + 1068x^{2} - 87x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq2+q4+q5q8q10q11+q13+q16+q17+q20+q22+q23+q25q26q29q31q32q342q37q40+q43+q98+O(q100) q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} - q^{11} + q^{13} + q^{16} + q^{17} + q^{20} + q^{22} + q^{23} + q^{25} - q^{26} - q^{29} - q^{31} - q^{32} - q^{34} - 2 q^{37} - q^{40} + q^{43}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1080Z)×\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times.

nn 217217 271271 541541 10011001
χ(n)\chi(n) 1-1 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
269.1
0
−1.00000 0 1.00000 1.00000 0 0 −1.00000 0 −1.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
120.i odd 2 1 CM by Q(30)\Q(\sqrt{-30})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1080.1.i.b yes 1
3.b odd 2 1 1080.1.i.c yes 1
5.b even 2 1 1080.1.i.d yes 1
8.b even 2 1 1080.1.i.a 1
9.c even 3 2 3240.1.bh.c 2
9.d odd 6 2 3240.1.bh.b 2
15.d odd 2 1 1080.1.i.a 1
24.h odd 2 1 1080.1.i.d yes 1
40.f even 2 1 1080.1.i.c yes 1
45.h odd 6 2 3240.1.bh.d 2
45.j even 6 2 3240.1.bh.a 2
72.j odd 6 2 3240.1.bh.a 2
72.n even 6 2 3240.1.bh.d 2
120.i odd 2 1 CM 1080.1.i.b yes 1
360.bh odd 6 2 3240.1.bh.c 2
360.bk even 6 2 3240.1.bh.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.1.i.a 1 8.b even 2 1
1080.1.i.a 1 15.d odd 2 1
1080.1.i.b yes 1 1.a even 1 1 trivial
1080.1.i.b yes 1 120.i odd 2 1 CM
1080.1.i.c yes 1 3.b odd 2 1
1080.1.i.c yes 1 40.f even 2 1
1080.1.i.d yes 1 5.b even 2 1
1080.1.i.d yes 1 24.h odd 2 1
3240.1.bh.a 2 45.j even 6 2
3240.1.bh.a 2 72.j odd 6 2
3240.1.bh.b 2 9.d odd 6 2
3240.1.bh.b 2 360.bk even 6 2
3240.1.bh.c 2 9.c even 3 2
3240.1.bh.c 2 360.bh odd 6 2
3240.1.bh.d 2 45.h odd 6 2
3240.1.bh.d 2 72.n even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(1080,[χ])S_{1}^{\mathrm{new}}(1080, [\chi]):

T7 T_{7} Copy content Toggle raw display
T11+1 T_{11} + 1 Copy content Toggle raw display
T131 T_{13} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T1 T - 1 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+1 T + 1 Copy content Toggle raw display
1313 T1 T - 1 Copy content Toggle raw display
1717 T1 T - 1 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T1 T - 1 Copy content Toggle raw display
2929 T+1 T + 1 Copy content Toggle raw display
3131 T+1 T + 1 Copy content Toggle raw display
3737 T+2 T + 2 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T1 T - 1 Copy content Toggle raw display
4747 T1 T - 1 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T2 T - 2 Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T+2 T + 2 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T+1 T + 1 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less