L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.866 + 1.5i)7-s + 0.999·8-s − 0.999·10-s + (−0.866 + 1.5i)13-s + (0.866 − 1.5i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + 1.73·26-s − 1.73·28-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.866 + 1.5i)7-s + 0.999·8-s − 0.999·10-s + (−0.866 + 1.5i)13-s + (0.866 − 1.5i)14-s + (−0.5 − 0.866i)16-s + 19-s + (0.499 + 0.866i)20-s + (−0.5 + 0.866i)23-s + (−0.499 − 0.866i)25-s + 1.73·26-s − 1.73·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.029013656\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.029013656\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.184579715381157226212144828112, −8.250883407629305071405093070438, −7.80609273040622150595082547335, −6.65276122278699662168649065487, −5.52958942153002377649906685039, −4.95314746965196723847036818141, −4.29290507556378104956988255263, −2.97085189344275941098175467200, −2.00989816245952511287976353807, −1.53383108504825593926054481878,
0.76791504493148578925639947913, 2.03615670931660941890564309877, 3.31666941922939719615505666243, 4.34904785810865522909886921583, 5.22118609886935278902269246630, 5.80010589999963555904474513588, 6.93448063066746972123759387568, 7.27516490243461534720762930013, 7.86366843866841084614309041802, 8.571296513410206845909214755927