L(s) = 1 | − 2·5-s − 7-s − 5·11-s − 5·13-s + 8·17-s + 4·19-s + 7·23-s + 25-s − 5·29-s − 5·31-s + 2·35-s − 12·37-s − 8·43-s − 5·47-s + 18·53-s + 10·55-s + 26·59-s − 2·61-s + 10·65-s + 14·67-s − 18·71-s + 5·77-s − 6·79-s − 10·83-s − 16·85-s + 6·89-s + 5·91-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.377·7-s − 1.50·11-s − 1.38·13-s + 1.94·17-s + 0.917·19-s + 1.45·23-s + 1/5·25-s − 0.928·29-s − 0.898·31-s + 0.338·35-s − 1.97·37-s − 1.21·43-s − 0.729·47-s + 2.47·53-s + 1.34·55-s + 3.38·59-s − 0.256·61-s + 1.24·65-s + 1.71·67-s − 2.13·71-s + 0.569·77-s − 0.675·79-s − 1.09·83-s − 1.73·85-s + 0.635·89-s + 0.524·91-s + ⋯ |
Λ(s)=(=((212⋅316⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((212⋅316⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
212⋅316⋅54
|
Sign: |
1
|
Analytic conductor: |
448010. |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 212⋅316⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.793363729 |
L(21) |
≈ |
1.793363729 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C2 | (1+T+T2)2 |
good | 7 | D4×C2 | 1+T+T2−2pT3−8pT4−2p2T5+p2T6+p3T7+p4T8 |
| 11 | C2×C22 | (1+5T+pT2)2(1−5T+14T2−5pT3+p2T4) |
| 13 | D4×C2 | 1+5T+7T2−40T3−170T4−40pT5+7p2T6+5p3T7+p4T8 |
| 17 | C2 | (1−2T+pT2)4 |
| 19 | C2 | (1−T+pT2)4 |
| 23 | D4×C2 | 1−7T+5T2+14T3+280T4+14pT5+5p2T6−7p3T7+p4T8 |
| 29 | D4×C2 | 1+5T−25T2−40T3+934T4−40pT5−25p2T6+5p3T7+p4T8 |
| 31 | D4×C2 | 1+5T−29T2−40T3+1180T4−40pT5−29p2T6+5p3T7+p4T8 |
| 37 | D4 | (1+6T+26T2+6pT3+p2T4)2 |
| 41 | C23 | 1−25T2−1056T4−25p2T6+p4T8 |
| 43 | C22 | (1+4T−27T2+4pT3+p2T4)2 |
| 47 | D4×C2 | 1+5T−61T2−40T3+4012T4−40pT5−61p2T6+5p3T7+p4T8 |
| 53 | D4 | (1−9T+112T2−9pT3+p2T4)2 |
| 59 | C22 | (1−13T+110T2−13pT3+p2T4)2 |
| 61 | D4×C2 | 1+2T−62T2−112T3+391T4−112pT5−62p2T6+2p3T7+p4T8 |
| 67 | D4×C2 | 1−14T+70T2+112T3−1745T4+112pT5+70p2T6−14p3T7+p4T8 |
| 71 | D4 | (1+9T+148T2+9pT3+p2T4)2 |
| 73 | C22 | (1−82T2+p2T4)2 |
| 79 | D4×C2 | 1+6T−74T2−288T3+3015T4−288pT5−74p2T6+6p3T7+p4T8 |
| 83 | D4×C2 | 1+10T−34T2−320T3+2767T4−320pT5−34p2T6+10p3T7+p4T8 |
| 89 | D4 | (1−3T+52T2−3pT3+p2T4)2 |
| 97 | C22 | (1+16T+159T2+16pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.09925083368134653594092433837, −5.63661864379034776542001094716, −5.44837942339292435963169058332, −5.43590690678611229897868269154, −5.42969412832855644202376512975, −5.28641907115237213210037992604, −5.06014006757891907360464634253, −4.88916031061894270373107541228, −4.31591032022742999178370831275, −4.18108384875981868390701580774, −4.13549531751586077961136025781, −3.93400762030274299023364035412, −3.45758623441384494762995693303, −3.45286782218502572716589536350, −2.97034135266453540496403006162, −2.96663573115802318698406795440, −2.93731378285775187473723937460, −2.63174143404559382185289653467, −2.06123706445758663165016355980, −1.92261902818342044740994526986, −1.79057216632657186770698716915, −1.23001109275533122997346350556, −0.988441127705432430257004561055, −0.39509856336968475628597315738, −0.39213207595486492653136790845,
0.39213207595486492653136790845, 0.39509856336968475628597315738, 0.988441127705432430257004561055, 1.23001109275533122997346350556, 1.79057216632657186770698716915, 1.92261902818342044740994526986, 2.06123706445758663165016355980, 2.63174143404559382185289653467, 2.93731378285775187473723937460, 2.96663573115802318698406795440, 2.97034135266453540496403006162, 3.45286782218502572716589536350, 3.45758623441384494762995693303, 3.93400762030274299023364035412, 4.13549531751586077961136025781, 4.18108384875981868390701580774, 4.31591032022742999178370831275, 4.88916031061894270373107541228, 5.06014006757891907360464634253, 5.28641907115237213210037992604, 5.42969412832855644202376512975, 5.43590690678611229897868269154, 5.44837942339292435963169058332, 5.63661864379034776542001094716, 6.09925083368134653594092433837