gp: [N,k,chi] = [3240,2,Mod(1081,3240)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3240.1081");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,-2,0,-1,0,0,0,-5,0,-5]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 4 x 2 − 5 x + 25 x^{4} - x^{3} - 4x^{2} - 5x + 25 x 4 − x 3 − 4 x 2 − 5 x + 2 5
x^4 - x^3 - 4*x^2 - 5*x + 25
:
β 1 \beta_{1} β 1 = = =
( ν 3 + 4 ν 2 − 4 ν − 25 ) / 20 ( \nu^{3} + 4\nu^{2} - 4\nu - 25 ) / 20 ( ν 3 + 4 ν 2 − 4 ν − 2 5 ) / 2 0
(v^3 + 4*v^2 - 4*v - 25) / 20
β 2 \beta_{2} β 2 = = =
( − ν 3 + ν 2 + 9 ν + 5 ) / 5 ( -\nu^{3} + \nu^{2} + 9\nu + 5 ) / 5 ( − ν 3 + ν 2 + 9 ν + 5 ) / 5
(-v^3 + v^2 + 9*v + 5) / 5
β 3 \beta_{3} β 3 = = =
( 3 ν 3 + 2 ν 2 + 8 ν − 25 ) / 10 ( 3\nu^{3} + 2\nu^{2} + 8\nu - 25 ) / 10 ( 3 ν 3 + 2 ν 2 + 8 ν − 2 5 ) / 1 0
(3*v^3 + 2*v^2 + 8*v - 25) / 10
ν \nu ν = = =
( β 3 + β 2 − 2 β 1 − 1 ) / 3 ( \beta_{3} + \beta_{2} - 2\beta _1 - 1 ) / 3 ( β 3 + β 2 − 2 β 1 − 1 ) / 3
(b3 + b2 - 2*b1 - 1) / 3
ν 2 \nu^{2} ν 2 = = =
( − β 3 + 2 β 2 + 14 β 1 + 13 ) / 3 ( -\beta_{3} + 2\beta_{2} + 14\beta _1 + 13 ) / 3 ( − β 3 + 2 β 2 + 1 4 β 1 + 1 3 ) / 3
(-b3 + 2*b2 + 14*b1 + 13) / 3
ν 3 \nu^{3} ν 3 = = =
( 8 β 3 − 4 β 2 − 4 β 1 + 19 ) / 3 ( 8\beta_{3} - 4\beta_{2} - 4\beta _1 + 19 ) / 3 ( 8 β 3 − 4 β 2 − 4 β 1 + 1 9 ) / 3
(8*b3 - 4*b2 - 4*b1 + 19) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 3240 Z ) × \left(\mathbb{Z}/3240\mathbb{Z}\right)^\times ( Z / 3 2 4 0 Z ) × .
n n n
1297 1297 1 2 9 7
1621 1621 1 6 2 1
2431 2431 2 4 3 1
3161 3161 3 1 6 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
1 1 1
β 1 \beta_{1} β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 3240 , [ χ ] ) S_{2}^{\mathrm{new}}(3240, [\chi]) S 2 n e w ( 3 2 4 0 , [ χ ] ) :
T 7 4 + T 7 3 + 15 T 7 2 − 14 T 7 + 196 T_{7}^{4} + T_{7}^{3} + 15T_{7}^{2} - 14T_{7} + 196 T 7 4 + T 7 3 + 1 5 T 7 2 − 1 4 T 7 + 1 9 6
T7^4 + T7^3 + 15*T7^2 - 14*T7 + 196
T 11 4 + 5 T 11 3 + 33 T 11 2 − 40 T 11 + 64 T_{11}^{4} + 5T_{11}^{3} + 33T_{11}^{2} - 40T_{11} + 64 T 1 1 4 + 5 T 1 1 3 + 3 3 T 1 1 2 − 4 0 T 1 1 + 6 4
T11^4 + 5*T11^3 + 33*T11^2 - 40*T11 + 64
T 17 − 2 T_{17} - 2 T 1 7 − 2
T17 - 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
( T 2 + T + 1 ) 2 (T^{2} + T + 1)^{2} ( T 2 + T + 1 ) 2
(T^2 + T + 1)^2
7 7 7
T 4 + T 3 + ⋯ + 196 T^{4} + T^{3} + \cdots + 196 T 4 + T 3 + ⋯ + 1 9 6
T^4 + T^3 + 15*T^2 - 14*T + 196
11 11 1 1
T 4 + 5 T 3 + ⋯ + 64 T^{4} + 5 T^{3} + \cdots + 64 T 4 + 5 T 3 + ⋯ + 6 4
T^4 + 5*T^3 + 33*T^2 - 40*T + 64
13 13 1 3
T 4 + 5 T 3 + ⋯ + 64 T^{4} + 5 T^{3} + \cdots + 64 T 4 + 5 T 3 + ⋯ + 6 4
T^4 + 5*T^3 + 33*T^2 - 40*T + 64
17 17 1 7
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
19 19 1 9
( T − 1 ) 4 (T - 1)^{4} ( T − 1 ) 4
(T - 1)^4
23 23 2 3
T 4 − 7 T 3 + ⋯ + 4 T^{4} - 7 T^{3} + \cdots + 4 T 4 − 7 T 3 + ⋯ + 4
T^4 - 7*T^3 + 51*T^2 + 14*T + 4
29 29 2 9
T 4 + 5 T 3 + ⋯ + 64 T^{4} + 5 T^{3} + \cdots + 64 T 4 + 5 T 3 + ⋯ + 6 4
T^4 + 5*T^3 + 33*T^2 - 40*T + 64
31 31 3 1
T 4 + 5 T 3 + ⋯ + 64 T^{4} + 5 T^{3} + \cdots + 64 T 4 + 5 T 3 + ⋯ + 6 4
T^4 + 5*T^3 + 33*T^2 - 40*T + 64
37 37 3 7
( T 2 + 6 T − 48 ) 2 (T^{2} + 6 T - 48)^{2} ( T 2 + 6 T − 4 8 ) 2
(T^2 + 6*T - 48)^2
41 41 4 1
T 4 + 57 T 2 + 3249 T^{4} + 57T^{2} + 3249 T 4 + 5 7 T 2 + 3 2 4 9
T^4 + 57*T^2 + 3249
43 43 4 3
( T 2 + 4 T + 16 ) 2 (T^{2} + 4 T + 16)^{2} ( T 2 + 4 T + 1 6 ) 2
(T^2 + 4*T + 16)^2
47 47 4 7
T 4 + 5 T 3 + ⋯ + 64 T^{4} + 5 T^{3} + \cdots + 64 T 4 + 5 T 3 + ⋯ + 6 4
T^4 + 5*T^3 + 33*T^2 - 40*T + 64
53 53 5 3
( T 2 − 9 T + 6 ) 2 (T^{2} - 9 T + 6)^{2} ( T 2 − 9 T + 6 ) 2
(T^2 - 9*T + 6)^2
59 59 5 9
( T 2 − 13 T + 169 ) 2 (T^{2} - 13 T + 169)^{2} ( T 2 − 1 3 T + 1 6 9 ) 2
(T^2 - 13*T + 169)^2
61 61 6 1
T 4 + 2 T 3 + ⋯ + 3136 T^{4} + 2 T^{3} + \cdots + 3136 T 4 + 2 T 3 + ⋯ + 3 1 3 6
T^4 + 2*T^3 + 60*T^2 - 112*T + 3136
67 67 6 7
T 4 − 14 T 3 + ⋯ + 64 T^{4} - 14 T^{3} + \cdots + 64 T 4 − 1 4 T 3 + ⋯ + 6 4
T^4 - 14*T^3 + 204*T^2 + 112*T + 64
71 71 7 1
( T 2 + 9 T + 6 ) 2 (T^{2} + 9 T + 6)^{2} ( T 2 + 9 T + 6 ) 2
(T^2 + 9*T + 6)^2
73 73 7 3
( T 2 − 228 ) 2 (T^{2} - 228)^{2} ( T 2 − 2 2 8 ) 2
(T^2 - 228)^2
79 79 7 9
T 4 + 6 T 3 + ⋯ + 2304 T^{4} + 6 T^{3} + \cdots + 2304 T 4 + 6 T 3 + ⋯ + 2 3 0 4
T^4 + 6*T^3 + 84*T^2 - 288*T + 2304
83 83 8 3
T 4 + 10 T 3 + ⋯ + 1024 T^{4} + 10 T^{3} + \cdots + 1024 T 4 + 1 0 T 3 + ⋯ + 1 0 2 4
T^4 + 10*T^3 + 132*T^2 - 320*T + 1024
89 89 8 9
( T 2 − 3 T − 126 ) 2 (T^{2} - 3 T - 126)^{2} ( T 2 − 3 T − 1 2 6 ) 2
(T^2 - 3*T - 126)^2
97 97 9 7
( T 2 + 16 T + 256 ) 2 (T^{2} + 16 T + 256)^{2} ( T 2 + 1 6 T + 2 5 6 ) 2
(T^2 + 16*T + 256)^2
show more
show less