Properties

Label 3240.2.q.y
Level 32403240
Weight 22
Character orbit 3240.q
Analytic conductor 25.87225.872
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3240.q (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.871530254925.8715302549
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,19)\Q(\sqrt{-3}, \sqrt{-19})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x34x25x+25 x^{4} - x^{3} - 4x^{2} - 5x + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q5+(β3β11)q7+(β32β12)q11+(β3+β2+3β1)q13+2q17+q19+(β3+β23β1)q23++(16β116)q97+O(q100) q + \beta_1 q^{5} + (\beta_{3} - \beta_1 - 1) q^{7} + ( - \beta_{3} - 2 \beta_1 - 2) q^{11} + ( - \beta_{3} + \beta_{2} + 3 \beta_1) q^{13} + 2 q^{17} + q^{19} + ( - \beta_{3} + \beta_{2} - 3 \beta_1) q^{23}+ \cdots + ( - 16 \beta_1 - 16) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q5q75q115q13+8q17+4q19+7q232q255q295q31+2q3512q378q435q4715q49+18q53+10q55+26q59+32q97+O(q100) 4 q - 2 q^{5} - q^{7} - 5 q^{11} - 5 q^{13} + 8 q^{17} + 4 q^{19} + 7 q^{23} - 2 q^{25} - 5 q^{29} - 5 q^{31} + 2 q^{35} - 12 q^{37} - 8 q^{43} - 5 q^{47} - 15 q^{49} + 18 q^{53} + 10 q^{55} + 26 q^{59}+ \cdots - 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x34x25x+25 x^{4} - x^{3} - 4x^{2} - 5x + 25 : Copy content Toggle raw display

β1\beta_{1}== (ν3+4ν24ν25)/20 ( \nu^{3} + 4\nu^{2} - 4\nu - 25 ) / 20 Copy content Toggle raw display
β2\beta_{2}== (ν3+ν2+9ν+5)/5 ( -\nu^{3} + \nu^{2} + 9\nu + 5 ) / 5 Copy content Toggle raw display
β3\beta_{3}== (3ν3+2ν2+8ν25)/10 ( 3\nu^{3} + 2\nu^{2} + 8\nu - 25 ) / 10 Copy content Toggle raw display
ν\nu== (β3+β22β11)/3 ( \beta_{3} + \beta_{2} - 2\beta _1 - 1 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (β3+2β2+14β1+13)/3 ( -\beta_{3} + 2\beta_{2} + 14\beta _1 + 13 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (8β34β24β1+19)/3 ( 8\beta_{3} - 4\beta_{2} - 4\beta _1 + 19 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3240Z)×\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times.

nn 12971297 16211621 24312431 31613161
χ(n)\chi(n) 11 11 11 β1\beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1081.1
−1.63746 1.52274i
2.13746 + 0.656712i
−1.63746 + 1.52274i
2.13746 0.656712i
0 0 0 −0.500000 + 0.866025i 0 −2.13746 3.70219i 0 0 0
1081.2 0 0 0 −0.500000 + 0.866025i 0 1.63746 + 2.83616i 0 0 0
2161.1 0 0 0 −0.500000 0.866025i 0 −2.13746 + 3.70219i 0 0 0
2161.2 0 0 0 −0.500000 0.866025i 0 1.63746 2.83616i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.2.q.y 4
3.b odd 2 1 3240.2.q.be 4
9.c even 3 1 3240.2.a.n yes 2
9.c even 3 1 inner 3240.2.q.y 4
9.d odd 6 1 3240.2.a.h 2
9.d odd 6 1 3240.2.q.be 4
36.f odd 6 1 6480.2.a.bm 2
36.h even 6 1 6480.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3240.2.a.h 2 9.d odd 6 1
3240.2.a.n yes 2 9.c even 3 1
3240.2.q.y 4 1.a even 1 1 trivial
3240.2.q.y 4 9.c even 3 1 inner
3240.2.q.be 4 3.b odd 2 1
3240.2.q.be 4 9.d odd 6 1
6480.2.a.bf 2 36.h even 6 1
6480.2.a.bm 2 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3240,[χ])S_{2}^{\mathrm{new}}(3240, [\chi]):

T74+T73+15T7214T7+196 T_{7}^{4} + T_{7}^{3} + 15T_{7}^{2} - 14T_{7} + 196 Copy content Toggle raw display
T114+5T113+33T11240T11+64 T_{11}^{4} + 5T_{11}^{3} + 33T_{11}^{2} - 40T_{11} + 64 Copy content Toggle raw display
T172 T_{17} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
77 T4+T3++196 T^{4} + T^{3} + \cdots + 196 Copy content Toggle raw display
1111 T4+5T3++64 T^{4} + 5 T^{3} + \cdots + 64 Copy content Toggle raw display
1313 T4+5T3++64 T^{4} + 5 T^{3} + \cdots + 64 Copy content Toggle raw display
1717 (T2)4 (T - 2)^{4} Copy content Toggle raw display
1919 (T1)4 (T - 1)^{4} Copy content Toggle raw display
2323 T47T3++4 T^{4} - 7 T^{3} + \cdots + 4 Copy content Toggle raw display
2929 T4+5T3++64 T^{4} + 5 T^{3} + \cdots + 64 Copy content Toggle raw display
3131 T4+5T3++64 T^{4} + 5 T^{3} + \cdots + 64 Copy content Toggle raw display
3737 (T2+6T48)2 (T^{2} + 6 T - 48)^{2} Copy content Toggle raw display
4141 T4+57T2+3249 T^{4} + 57T^{2} + 3249 Copy content Toggle raw display
4343 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
4747 T4+5T3++64 T^{4} + 5 T^{3} + \cdots + 64 Copy content Toggle raw display
5353 (T29T+6)2 (T^{2} - 9 T + 6)^{2} Copy content Toggle raw display
5959 (T213T+169)2 (T^{2} - 13 T + 169)^{2} Copy content Toggle raw display
6161 T4+2T3++3136 T^{4} + 2 T^{3} + \cdots + 3136 Copy content Toggle raw display
6767 T414T3++64 T^{4} - 14 T^{3} + \cdots + 64 Copy content Toggle raw display
7171 (T2+9T+6)2 (T^{2} + 9 T + 6)^{2} Copy content Toggle raw display
7373 (T2228)2 (T^{2} - 228)^{2} Copy content Toggle raw display
7979 T4+6T3++2304 T^{4} + 6 T^{3} + \cdots + 2304 Copy content Toggle raw display
8383 T4+10T3++1024 T^{4} + 10 T^{3} + \cdots + 1024 Copy content Toggle raw display
8989 (T23T126)2 (T^{2} - 3 T - 126)^{2} Copy content Toggle raw display
9797 (T2+16T+256)2 (T^{2} + 16 T + 256)^{2} Copy content Toggle raw display
show more
show less