Properties

Label 3240.2.q.y
Level $3240$
Weight $2$
Character orbit 3240.q
Analytic conductor $25.872$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,2,Mod(1081,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.1081");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{5} + (\beta_{3} - \beta_1 - 1) q^{7} + ( - \beta_{3} - 2 \beta_1 - 2) q^{11} + ( - \beta_{3} + \beta_{2} + 3 \beta_1) q^{13} + 2 q^{17} + q^{19} + ( - \beta_{3} + \beta_{2} - 3 \beta_1) q^{23}+ \cdots + ( - 16 \beta_1 - 16) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - q^{7} - 5 q^{11} - 5 q^{13} + 8 q^{17} + 4 q^{19} + 7 q^{23} - 2 q^{25} - 5 q^{29} - 5 q^{31} + 2 q^{35} - 12 q^{37} - 8 q^{43} - 5 q^{47} - 15 q^{49} + 18 q^{53} + 10 q^{55} + 26 q^{59}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 4\nu - 25 ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 9\nu + 5 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} + 2\nu^{2} + 8\nu - 25 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - 2\beta _1 - 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 2\beta_{2} + 14\beta _1 + 13 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 8\beta_{3} - 4\beta_{2} - 4\beta _1 + 19 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1081.1
−1.63746 1.52274i
2.13746 + 0.656712i
−1.63746 + 1.52274i
2.13746 0.656712i
0 0 0 −0.500000 + 0.866025i 0 −2.13746 3.70219i 0 0 0
1081.2 0 0 0 −0.500000 + 0.866025i 0 1.63746 + 2.83616i 0 0 0
2161.1 0 0 0 −0.500000 0.866025i 0 −2.13746 + 3.70219i 0 0 0
2161.2 0 0 0 −0.500000 0.866025i 0 1.63746 2.83616i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.2.q.y 4
3.b odd 2 1 3240.2.q.be 4
9.c even 3 1 3240.2.a.n yes 2
9.c even 3 1 inner 3240.2.q.y 4
9.d odd 6 1 3240.2.a.h 2
9.d odd 6 1 3240.2.q.be 4
36.f odd 6 1 6480.2.a.bm 2
36.h even 6 1 6480.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3240.2.a.h 2 9.d odd 6 1
3240.2.a.n yes 2 9.c even 3 1
3240.2.q.y 4 1.a even 1 1 trivial
3240.2.q.y 4 9.c even 3 1 inner
3240.2.q.be 4 3.b odd 2 1
3240.2.q.be 4 9.d odd 6 1
6480.2.a.bf 2 36.h even 6 1
6480.2.a.bm 2 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3240, [\chi])\):

\( T_{7}^{4} + T_{7}^{3} + 15T_{7}^{2} - 14T_{7} + 196 \) Copy content Toggle raw display
\( T_{11}^{4} + 5T_{11}^{3} + 33T_{11}^{2} - 40T_{11} + 64 \) Copy content Toggle raw display
\( T_{17} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + \cdots + 196 \) Copy content Toggle raw display
$11$ \( T^{4} + 5 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{4} + 5 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$17$ \( (T - 2)^{4} \) Copy content Toggle raw display
$19$ \( (T - 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} - 7 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$29$ \( T^{4} + 5 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$31$ \( T^{4} + 5 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( (T^{2} + 6 T - 48)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 57T^{2} + 3249 \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 5 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$53$ \( (T^{2} - 9 T + 6)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 13 T + 169)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$67$ \( T^{4} - 14 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$71$ \( (T^{2} + 9 T + 6)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 228)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 6 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$83$ \( T^{4} + 10 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$89$ \( (T^{2} - 3 T - 126)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 16 T + 256)^{2} \) Copy content Toggle raw display
show more
show less