L(s) = 1 | + (−0.5 + 0.866i)5-s + (−2.13 − 3.70i)7-s + (0.637 + 1.10i)11-s + (−3.13 + 5.43i)13-s + 2·17-s + 19-s + (−0.137 + 0.238i)23-s + (−0.499 − 0.866i)25-s + (0.637 + 1.10i)29-s + (0.637 − 1.10i)31-s + 4.27·35-s + 4.54·37-s + (3.77 − 6.53i)41-s + (−2 − 3.46i)43-s + (−3.13 − 5.43i)47-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (−0.807 − 1.39i)7-s + (0.192 + 0.332i)11-s + (−0.870 + 1.50i)13-s + 0.485·17-s + 0.229·19-s + (−0.0286 + 0.0496i)23-s + (−0.0999 − 0.173i)25-s + (0.118 + 0.205i)29-s + (0.114 − 0.198i)31-s + 0.722·35-s + 0.747·37-s + (0.589 − 1.02i)41-s + (−0.304 − 0.528i)43-s + (−0.457 − 0.792i)47-s + ⋯ |
Λ(s)=(=(3240s/2ΓC(s)L(s)(0.173+0.984i)Λ(2−s)
Λ(s)=(=(3240s/2ΓC(s+1/2)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
3240
= 23⋅34⋅5
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
25.8715 |
Root analytic conductor: |
5.08640 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3240(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3240, ( :1/2), 0.173+0.984i)
|
Particular Values
L(1) |
≈ |
1.074841923 |
L(21) |
≈ |
1.074841923 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(2.13+3.70i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−0.637−1.10i)T+(−5.5+9.52i)T2 |
| 13 | 1+(3.13−5.43i)T+(−6.5−11.2i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−T+19T2 |
| 23 | 1+(0.137−0.238i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.637−1.10i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−0.637+1.10i)T+(−15.5−26.8i)T2 |
| 37 | 1−4.54T+37T2 |
| 41 | 1+(−3.77+6.53i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2+3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.13+5.43i)T+(−23.5+40.7i)T2 |
| 53 | 1−8.27T+53T2 |
| 59 | 1+(−6.5+11.2i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.27−5.67i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.27+12.6i)T+(−33.5−58.0i)T2 |
| 71 | 1+0.725T+71T2 |
| 73 | 1+15.0T+73T2 |
| 79 | 1+(−2.27−3.94i)T+(−39.5+68.4i)T2 |
| 83 | 1+(6.27+10.8i)T+(−41.5+71.8i)T2 |
| 89 | 1+9.82T+89T2 |
| 97 | 1+(8+13.8i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.455807225540462834214002409533, −7.42978968680404756991616881469, −7.03836172448920726817286488711, −6.56232871458853673207573016180, −5.43590690678611229897868269154, −4.31591032022742999178370831275, −3.93400762030274299023364035412, −2.93731378285775187473723937460, −1.79057216632657186770698716915, −0.39213207595486492653136790845,
0.988441127705432430257004561055, 2.63174143404559382185289653467, 2.96663573115802318698406795440, 4.13549531751586077961136025781, 5.28641907115237213210037992604, 5.63661864379034776542001094716, 6.43656546525843915890479731140, 7.44465769534680243588252108954, 8.199552401943200579518984165449, 8.716584123807434904046316709762