L(s) = 1 | − 2-s + 4-s + 7-s − 8-s − 9-s − 14-s + 16-s + 18-s + i·25-s + 28-s + 29-s − 32-s − 36-s + 2·43-s + 49-s − i·50-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + 7-s − 8-s − 9-s − 14-s + 16-s + 18-s + i·25-s + 28-s + 29-s − 32-s − 36-s + 2·43-s + 49-s − i·50-s + ⋯ |
Λ(s)=(=(3248s/2ΓC(s)L(s)(0.979−0.201i)Λ(1−s)
Λ(s)=(=(3248s/2ΓC(s)L(s)(0.979−0.201i)Λ(1−s)
Degree: |
2 |
Conductor: |
3248
= 24⋅7⋅29
|
Sign: |
0.979−0.201i
|
Analytic conductor: |
1.62096 |
Root analytic conductor: |
1.27317 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3248(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3248, ( :0), 0.979−0.201i)
|
Particular Values
L(21) |
≈ |
0.8466814272 |
L(21) |
≈ |
0.8466814272 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 7 | 1−T |
| 29 | 1−T |
good | 3 | 1+T2 |
| 5 | 1−iT2 |
| 11 | 1+T2 |
| 13 | 1+iT2 |
| 17 | 1+iT2 |
| 19 | 1+T2 |
| 23 | 1+T2 |
| 31 | 1−iT2 |
| 37 | 1+T2 |
| 41 | 1+iT2 |
| 43 | 1−2T+T2 |
| 47 | 1+iT2 |
| 53 | 1+(−1+i)T−iT2 |
| 59 | 1−iT2 |
| 61 | 1−T2 |
| 67 | 1+(−1−i)T+iT2 |
| 71 | 1−2iT−T2 |
| 73 | 1+iT2 |
| 79 | 1+(1+i)T+iT2 |
| 83 | 1+iT2 |
| 89 | 1−iT2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.669169123759502447910530288252, −8.329973364466046051478228163938, −7.51279116184036266999989923339, −6.86372651829014703807993398501, −5.81616868536283855247807630184, −5.33027175068267797906901932640, −4.13048132632576997271949163170, −2.97326892554484005665052214901, −2.18400660027071355422522475813, −1.02967192569932525265088565312,
0.905411723927944538741942797484, 2.17998584505851809215630760129, 2.85540626242754783418027731214, 4.10313466885390304629178645617, 5.15427182921512863451737905834, 5.93898304515711392371357480592, 6.64153991200497845919031044149, 7.66668530326608183975860618988, 8.072657656966993276945340033109, 8.808022153566740644336177429717