L(s) = 1 | − 2-s + 4-s + 7-s − 8-s − 9-s − 14-s + 16-s + 18-s + i·25-s + 28-s + 29-s − 32-s − 36-s + 2·43-s + 49-s − i·50-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + 7-s − 8-s − 9-s − 14-s + 16-s + 18-s + i·25-s + 28-s + 29-s − 32-s − 36-s + 2·43-s + 49-s − i·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.201i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 - 0.201i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8466814272\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8466814272\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 29 | \( 1 - T \) |
good | 3 | \( 1 + T^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 - 2T + T^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (-1 - i)T + iT^{2} \) |
| 71 | \( 1 - 2iT - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (1 + i)T + iT^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.669169123759502447910530288252, −8.329973364466046051478228163938, −7.51279116184036266999989923339, −6.86372651829014703807993398501, −5.81616868536283855247807630184, −5.33027175068267797906901932640, −4.13048132632576997271949163170, −2.97326892554484005665052214901, −2.18400660027071355422522475813, −1.02967192569932525265088565312,
0.905411723927944538741942797484, 2.17998584505851809215630760129, 2.85540626242754783418027731214, 4.10313466885390304629178645617, 5.15427182921512863451737905834, 5.93898304515711392371357480592, 6.64153991200497845919031044149, 7.66668530326608183975860618988, 8.072657656966993276945340033109, 8.808022153566740644336177429717