Properties

Label 3248.1.bo.a
Level $3248$
Weight $1$
Character orbit 3248.bo
Analytic conductor $1.621$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3248,1,Mod(307,3248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3248, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3248.307");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3248 = 2^{4} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3248.bo (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.62096316103\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.2447484928.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + q^{7} - q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{4} + q^{7} - q^{8} - q^{9} - q^{14} + q^{16} + q^{18} - i q^{25} + q^{28} + q^{29} - q^{32} - q^{36} + 2 q^{43} + q^{49} + i q^{50} + (i + 1) q^{53} - q^{56} - q^{58} - q^{63} + q^{64} + ( - i + 1) q^{67} - 2 i q^{71} + q^{72} + (i - 1) q^{79} + q^{81} - 2 q^{86} - q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{7} - 2 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + 2 q^{7} - 2 q^{8} - 2 q^{9} - 2 q^{14} + 2 q^{16} + 2 q^{18} + 2 q^{28} + 2 q^{29} - 2 q^{32} - 2 q^{36} + 4 q^{43} + 2 q^{49} + 2 q^{53} - 2 q^{56} - 2 q^{58} - 2 q^{63} + 2 q^{64} + 2 q^{67} + 2 q^{72} - 2 q^{79} + 2 q^{81} - 4 q^{86} - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3248\mathbb{Z}\right)^\times\).

\(n\) \(465\) \(785\) \(2031\) \(2437\)
\(\chi(n)\) \(-1\) \(i\) \(-1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
1.00000i
1.00000i
−1.00000 0 1.00000 0 0 1.00000 −1.00000 −1.00000 0
1259.1 −1.00000 0 1.00000 0 0 1.00000 −1.00000 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
464.j even 4 1 inner
3248.bo odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3248.1.bo.a yes 2
7.b odd 2 1 CM 3248.1.bo.a yes 2
16.f odd 4 1 3248.1.s.a 2
29.c odd 4 1 3248.1.s.a 2
112.j even 4 1 3248.1.s.a 2
203.g even 4 1 3248.1.s.a 2
464.j even 4 1 inner 3248.1.bo.a yes 2
3248.bo odd 4 1 inner 3248.1.bo.a yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3248.1.s.a 2 16.f odd 4 1
3248.1.s.a 2 29.c odd 4 1
3248.1.s.a 2 112.j even 4 1
3248.1.s.a 2 203.g even 4 1
3248.1.bo.a yes 2 1.a even 1 1 trivial
3248.1.bo.a yes 2 7.b odd 2 1 CM
3248.1.bo.a yes 2 464.j even 4 1 inner
3248.1.bo.a yes 2 3248.bo odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11} \) acting on \(S_{1}^{\mathrm{new}}(3248, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$71$ \( T^{2} + 4 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less