Properties

Label 2-3248-1.1-c1-0-81
Degree $2$
Conductor $3248$
Sign $-1$
Analytic cond. $25.9354$
Root an. cond. $5.09268$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2.37·5-s + 7-s − 2·9-s − 4.37·11-s − 2.37·13-s + 2.37·15-s + 2·17-s − 7.37·19-s + 21-s − 5.37·23-s + 0.627·25-s − 5·27-s − 29-s + 7.11·31-s − 4.37·33-s + 2.37·35-s − 4·37-s − 2.37·39-s + 0.627·41-s − 8.37·43-s − 4.74·45-s − 9.74·47-s + 49-s + 2·51-s + 9.74·53-s − 10.3·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.06·5-s + 0.377·7-s − 0.666·9-s − 1.31·11-s − 0.657·13-s + 0.612·15-s + 0.485·17-s − 1.69·19-s + 0.218·21-s − 1.12·23-s + 0.125·25-s − 0.962·27-s − 0.185·29-s + 1.27·31-s − 0.761·33-s + 0.400·35-s − 0.657·37-s − 0.379·39-s + 0.0980·41-s − 1.27·43-s − 0.707·45-s − 1.42·47-s + 0.142·49-s + 0.280·51-s + 1.33·53-s − 1.39·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3248\)    =    \(2^{4} \cdot 7 \cdot 29\)
Sign: $-1$
Analytic conductor: \(25.9354\)
Root analytic conductor: \(5.09268\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3248,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 - T + 3T^{2} \)
5 \( 1 - 2.37T + 5T^{2} \)
11 \( 1 + 4.37T + 11T^{2} \)
13 \( 1 + 2.37T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 7.37T + 19T^{2} \)
23 \( 1 + 5.37T + 23T^{2} \)
31 \( 1 - 7.11T + 31T^{2} \)
37 \( 1 + 4T + 37T^{2} \)
41 \( 1 - 0.627T + 41T^{2} \)
43 \( 1 + 8.37T + 43T^{2} \)
47 \( 1 + 9.74T + 47T^{2} \)
53 \( 1 - 9.74T + 53T^{2} \)
59 \( 1 + 8.74T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 7.37T + 67T^{2} \)
71 \( 1 - 5.37T + 71T^{2} \)
73 \( 1 - 11.3T + 73T^{2} \)
79 \( 1 - 15.8T + 79T^{2} \)
83 \( 1 + 10T + 83T^{2} \)
89 \( 1 + 14.1T + 89T^{2} \)
97 \( 1 + 0.627T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.167602759348633356152768676842, −7.896353527514638694523416005693, −6.69394246064281083795720330422, −5.93769898924469230420339723574, −5.29112941211912007289303150083, −4.50580771573554477325171553715, −3.28491907249612908477283635918, −2.37024763087187552478117523093, −1.92712589790890461493961451724, 0, 1.92712589790890461493961451724, 2.37024763087187552478117523093, 3.28491907249612908477283635918, 4.50580771573554477325171553715, 5.29112941211912007289303150083, 5.93769898924469230420339723574, 6.69394246064281083795720330422, 7.896353527514638694523416005693, 8.167602759348633356152768676842

Graph of the $Z$-function along the critical line