Properties

Label 3248.2.a.s
Level $3248$
Weight $2$
Character orbit 3248.a
Self dual yes
Analytic conductor $25.935$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3248,2,Mod(1,3248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3248 = 2^{4} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.9354105765\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 812)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + (\beta - 1) q^{5} + q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + (\beta - 1) q^{5} + q^{7} - 2 q^{9} + ( - \beta - 1) q^{11} + ( - \beta + 1) q^{13} + (\beta - 1) q^{15} + 2 q^{17} + ( - \beta - 4) q^{19} + q^{21} + ( - \beta - 2) q^{23} + ( - \beta + 4) q^{25} - 5 q^{27} - q^{29} + (3 \beta - 3) q^{31} + ( - \beta - 1) q^{33} + (\beta - 1) q^{35} - 4 q^{37} + ( - \beta + 1) q^{39} + ( - \beta + 4) q^{41} + ( - \beta - 5) q^{43} + ( - 2 \beta + 2) q^{45} + ( - 2 \beta - 3) q^{47} + q^{49} + 2 q^{51} + (2 \beta + 3) q^{53} + ( - \beta - 7) q^{55} + ( - \beta - 4) q^{57} + ( - 2 \beta - 2) q^{59} - 2 q^{61} - 2 q^{63} + (\beta - 9) q^{65} + ( - \beta - 4) q^{67} + ( - \beta - 2) q^{69} + (\beta + 2) q^{71} + (\beta + 8) q^{73} + ( - \beta + 4) q^{75} + ( - \beta - 1) q^{77} + (5 \beta - 1) q^{79} + q^{81} - 10 q^{83} + (2 \beta - 2) q^{85} - q^{87} + ( - 3 \beta - 4) q^{89} + ( - \beta + 1) q^{91} + (3 \beta - 3) q^{93} + ( - 4 \beta - 4) q^{95} + (\beta - 4) q^{97} + (2 \beta + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - q^{5} + 2 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - q^{5} + 2 q^{7} - 4 q^{9} - 3 q^{11} + q^{13} - q^{15} + 4 q^{17} - 9 q^{19} + 2 q^{21} - 5 q^{23} + 7 q^{25} - 10 q^{27} - 2 q^{29} - 3 q^{31} - 3 q^{33} - q^{35} - 8 q^{37} + q^{39} + 7 q^{41} - 11 q^{43} + 2 q^{45} - 8 q^{47} + 2 q^{49} + 4 q^{51} + 8 q^{53} - 15 q^{55} - 9 q^{57} - 6 q^{59} - 4 q^{61} - 4 q^{63} - 17 q^{65} - 9 q^{67} - 5 q^{69} + 5 q^{71} + 17 q^{73} + 7 q^{75} - 3 q^{77} + 3 q^{79} + 2 q^{81} - 20 q^{83} - 2 q^{85} - 2 q^{87} - 11 q^{89} + q^{91} - 3 q^{93} - 12 q^{95} - 7 q^{97} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.37228
3.37228
0 1.00000 0 −3.37228 0 1.00000 0 −2.00000 0
1.2 0 1.00000 0 2.37228 0 1.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3248.2.a.s 2
4.b odd 2 1 812.2.a.c 2
12.b even 2 1 7308.2.a.f 2
28.d even 2 1 5684.2.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
812.2.a.c 2 4.b odd 2 1
3248.2.a.s 2 1.a even 1 1 trivial
5684.2.a.m 2 28.d even 2 1
7308.2.a.f 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3248))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{2} + T_{5} - 8 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T - 8 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 3T - 6 \) Copy content Toggle raw display
$13$ \( T^{2} - T - 8 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 9T + 12 \) Copy content Toggle raw display
$23$ \( T^{2} + 5T - 2 \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3T - 72 \) Copy content Toggle raw display
$37$ \( (T + 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 7T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} + 11T + 22 \) Copy content Toggle raw display
$47$ \( T^{2} + 8T - 17 \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 17 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T - 24 \) Copy content Toggle raw display
$61$ \( (T + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 9T + 12 \) Copy content Toggle raw display
$71$ \( T^{2} - 5T - 2 \) Copy content Toggle raw display
$73$ \( T^{2} - 17T + 64 \) Copy content Toggle raw display
$79$ \( T^{2} - 3T - 204 \) Copy content Toggle raw display
$83$ \( (T + 10)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 11T - 44 \) Copy content Toggle raw display
$97$ \( T^{2} + 7T + 4 \) Copy content Toggle raw display
show more
show less