L(s) = 1 | − 2.51·2-s + 1.51i·3-s + 4.32·4-s − 3.80i·6-s + 3.32·7-s − 5.83·8-s + 0.707·9-s − 2.83i·11-s + 6.54i·12-s + (0.806 − 3.51i)13-s − 8.34·14-s + 6.02·16-s − 6.64i·17-s − 1.77·18-s + 2.19i·19-s + ⋯ |
L(s) = 1 | − 1.77·2-s + 0.874i·3-s + 2.16·4-s − 1.55i·6-s + 1.25·7-s − 2.06·8-s + 0.235·9-s − 0.854i·11-s + 1.88i·12-s + (0.223 − 0.974i)13-s − 2.23·14-s + 1.50·16-s − 1.61i·17-s − 0.419·18-s + 0.503i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 - 0.235i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.971 - 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.703229 + 0.0840765i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.703229 + 0.0840765i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (-0.806 + 3.51i)T \) |
good | 2 | \( 1 + 2.51T + 2T^{2} \) |
| 3 | \( 1 - 1.51iT - 3T^{2} \) |
| 7 | \( 1 - 3.32T + 7T^{2} \) |
| 11 | \( 1 + 2.83iT - 11T^{2} \) |
| 17 | \( 1 + 6.64iT - 17T^{2} \) |
| 19 | \( 1 - 2.19iT - 19T^{2} \) |
| 23 | \( 1 - 0.485iT - 23T^{2} \) |
| 29 | \( 1 - 3.32T + 29T^{2} \) |
| 31 | \( 1 + 3.80iT - 31T^{2} \) |
| 37 | \( 1 - 9.32T + 37T^{2} \) |
| 41 | \( 1 - 1.61iT - 41T^{2} \) |
| 43 | \( 1 - 0.872iT - 43T^{2} \) |
| 47 | \( 1 + 3.32T + 47T^{2} \) |
| 53 | \( 1 - 11.6iT - 53T^{2} \) |
| 59 | \( 1 - 8.83iT - 59T^{2} \) |
| 61 | \( 1 + 3.70T + 61T^{2} \) |
| 67 | \( 1 + 4.29T + 67T^{2} \) |
| 71 | \( 1 + 2.19iT - 71T^{2} \) |
| 73 | \( 1 + 12.7T + 73T^{2} \) |
| 79 | \( 1 + 0.585T + 79T^{2} \) |
| 83 | \( 1 - 7.70T + 83T^{2} \) |
| 89 | \( 1 + 3.41iT - 89T^{2} \) |
| 97 | \( 1 + 0.641T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16464300172856585579635594194, −10.56996117927670162517658963082, −9.731744547455279143915691540078, −8.941401121387006481306277464484, −8.026257149342699668783736278677, −7.41644499722193559129017001499, −5.88802135872215528763261607001, −4.61067323617825648152040258097, −2.86177683701127673778854391554, −1.09568076286510034531210624994,
1.41377088203708015654048802902, 2.06540704347526977714218418144, 4.49515536275461632505894386410, 6.35865018412583693881678197803, 7.09391056602195649614593513187, 7.974106809746168214521881359357, 8.527509234218118528304685506081, 9.624674281925363323213756181454, 10.54412543862200740261642450140, 11.36439379411337636089062570440