Properties

Label 325.2.d.e
Level $325$
Weight $2$
Character orbit 325.d
Analytic conductor $2.595$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(324,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{5} q^{3} + ( - \beta_{3} + 2) q^{4} + ( - \beta_{5} + \beta_{4} + \beta_{2}) q^{6} + ( - \beta_{3} + 1) q^{7} + (\beta_{3} - \beta_1 - 1) q^{8} + (\beta_{3} + 2 \beta_1 - 2) q^{9}+ \cdots + ( - 7 \beta_{5} - 2 \beta_{4} + 5 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 10 q^{4} + 4 q^{7} - 6 q^{8} - 6 q^{9} + 2 q^{13} - 8 q^{14} + 10 q^{16} - 34 q^{18} + 14 q^{26} + 44 q^{28} + 4 q^{29} - 34 q^{32} + 36 q^{33} - 34 q^{36} + 40 q^{37} + 16 q^{39} - 4 q^{47}+ \cdots - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} - 24\nu^{4} + 6\nu^{3} + \nu^{2} - 6\nu - 285 ) / 131 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 6\nu^{5} - 13\nu^{4} + 36\nu^{3} + 6\nu^{2} + 226\nu - 138 ) / 131 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 6\nu^{5} - 13\nu^{4} + 36\nu^{3} + 6\nu^{2} - 36\nu - 7 ) / 131 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 46\nu^{5} - 56\nu^{4} + 14\nu^{3} + 308\nu^{2} + 772\nu - 534 ) / 393 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -92\nu^{5} + 112\nu^{4} - 28\nu^{3} - 223\nu^{2} - 1544\nu + 1068 ) / 393 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{5} + \beta_{4} + 4\beta_{3} + 4\beta_{2} - 2\beta _1 - 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} - 6\beta _1 - 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{5} - 5\beta_{4} + 9\beta_{3} - 9\beta_{2} - 7\beta _1 - 12 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
324.1
1.66044 + 1.66044i
1.66044 1.66044i
−1.33641 + 1.33641i
−1.33641 1.33641i
0.675970 0.675970i
0.675970 + 0.675970i
−2.51414 1.51414i 4.32088 0 3.80675i 3.32088 −5.83502 0.707389 0
324.2 −2.51414 1.51414i 4.32088 0 3.80675i 3.32088 −5.83502 0.707389 0
324.3 −0.571993 0.428007i −1.67282 0 0.244817i −2.67282 2.10083 2.81681 0
324.4 −0.571993 0.428007i −1.67282 0 0.244817i −2.67282 2.10083 2.81681 0
324.5 2.08613 3.08613i 2.35194 0 6.43807i 1.35194 0.734191 −6.52420 0
324.6 2.08613 3.08613i 2.35194 0 6.43807i 1.35194 0.734191 −6.52420 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 324.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.2.d.e 6
5.b even 2 1 325.2.d.f 6
5.c odd 4 1 65.2.c.a 6
5.c odd 4 1 325.2.c.g 6
13.b even 2 1 325.2.d.f 6
15.e even 4 1 585.2.b.g 6
20.e even 4 1 1040.2.k.d 6
65.d even 2 1 inner 325.2.d.e 6
65.f even 4 1 845.2.a.k 3
65.f even 4 1 4225.2.a.be 3
65.h odd 4 1 65.2.c.a 6
65.h odd 4 1 325.2.c.g 6
65.k even 4 1 845.2.a.i 3
65.k even 4 1 4225.2.a.bc 3
65.o even 12 2 845.2.e.k 6
65.q odd 12 2 845.2.m.h 12
65.r odd 12 2 845.2.m.h 12
65.t even 12 2 845.2.e.i 6
195.j odd 4 1 7605.2.a.cc 3
195.s even 4 1 585.2.b.g 6
195.u odd 4 1 7605.2.a.bs 3
260.p even 4 1 1040.2.k.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.c.a 6 5.c odd 4 1
65.2.c.a 6 65.h odd 4 1
325.2.c.g 6 5.c odd 4 1
325.2.c.g 6 65.h odd 4 1
325.2.d.e 6 1.a even 1 1 trivial
325.2.d.e 6 65.d even 2 1 inner
325.2.d.f 6 5.b even 2 1
325.2.d.f 6 13.b even 2 1
585.2.b.g 6 15.e even 4 1
585.2.b.g 6 195.s even 4 1
845.2.a.i 3 65.k even 4 1
845.2.a.k 3 65.f even 4 1
845.2.e.i 6 65.t even 12 2
845.2.e.k 6 65.o even 12 2
845.2.m.h 12 65.q odd 12 2
845.2.m.h 12 65.r odd 12 2
1040.2.k.d 6 20.e even 4 1
1040.2.k.d 6 260.p even 4 1
4225.2.a.bc 3 65.k even 4 1
4225.2.a.be 3 65.f even 4 1
7605.2.a.bs 3 195.u odd 4 1
7605.2.a.cc 3 195.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + T_{2}^{2} - 5T_{2} - 3 \) acting on \(S_{2}^{\mathrm{new}}(325, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{3} + T^{2} - 5 T - 3)^{2} \) Copy content Toggle raw display
$3$ \( T^{6} + 12 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{3} - 2 T^{2} - 8 T + 12)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 48 T^{4} + \cdots + 2916 \) Copy content Toggle raw display
$13$ \( T^{6} - 2 T^{5} + \cdots + 2197 \) Copy content Toggle raw display
$17$ \( T^{6} + 80 T^{4} + \cdots + 9216 \) Copy content Toggle raw display
$19$ \( T^{6} + 44 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$23$ \( T^{6} + 32 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( (T^{3} - 2 T^{2} - 8 T + 12)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 56 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$37$ \( (T^{3} - 20 T^{2} + \cdots - 228)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + 92 T^{4} + \cdots + 5184 \) Copy content Toggle raw display
$43$ \( T^{6} + 120 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$47$ \( (T^{3} + 2 T^{2} - 8 T - 12)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + 156 T^{4} + \cdots + 5184 \) Copy content Toggle raw display
$59$ \( T^{6} + 84 T^{4} + \cdots + 324 \) Copy content Toggle raw display
$61$ \( (T^{3} + 6 T^{2} - 12 T - 76)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 18 T^{2} + \cdots + 108)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 44 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$73$ \( (T^{3} + 20 T^{2} + \cdots - 516)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 12 T^{2} + \cdots - 32)^{2} \) Copy content Toggle raw display
$83$ \( (T^{3} - 18 T^{2} + \cdots - 36)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 192 T^{4} + \cdots + 82944 \) Copy content Toggle raw display
$97$ \( (T^{3} - 14 T^{2} + \cdots + 24)^{2} \) Copy content Toggle raw display
show more
show less