Properties

Label 845.2.m.h
Level $845$
Weight $2$
Character orbit 845.m
Analytic conductor $6.747$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(316,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{8} - 24x^{7} + 96x^{5} + 304x^{4} + 384x^{3} + 288x^{2} + 144x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{8} q^{2} + ( - \beta_{11} + \beta_{7} + 1) q^{3} + (\beta_{10} - 2 \beta_{7} - \beta_{3}) q^{4} + (\beta_{6} + \beta_{2}) q^{5} + ( - \beta_{5} - \beta_{4} + 4 \beta_{2}) q^{6} + (\beta_{5} - \beta_{2}) q^{7}+ \cdots + ( - 5 \beta_{9} + 7 \beta_{8} + \cdots + 8 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} + 10 q^{4} - 6 q^{9} - 2 q^{10} + 16 q^{14} - 10 q^{16} - 8 q^{17} + 24 q^{22} - 16 q^{23} - 12 q^{25} - 56 q^{27} + 4 q^{29} - 20 q^{30} + 4 q^{35} + 34 q^{36} - 40 q^{38} - 12 q^{40} - 44 q^{42}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 16x^{8} - 24x^{7} + 96x^{5} + 304x^{4} + 384x^{3} + 288x^{2} + 144x + 36 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 473 \nu^{11} - 516 \nu^{10} + 1118 \nu^{9} - 3014 \nu^{8} - 4564 \nu^{7} - 5676 \nu^{6} + \cdots - 246168 ) / 103944 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 962 \nu^{11} - 2392 \nu^{10} + 2887 \nu^{9} - 2220 \nu^{8} - 13990 \nu^{7} + 14442 \nu^{6} + \cdots + 15984 ) / 103944 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 748 \nu^{11} - 816 \nu^{10} + 1768 \nu^{9} - 4162 \nu^{8} - 6311 \nu^{7} - 8976 \nu^{6} + \cdots - 98004 ) / 51972 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 962 \nu^{11} - 2392 \nu^{10} + 2887 \nu^{9} - 2220 \nu^{8} - 13990 \nu^{7} + 14442 \nu^{6} + \cdots + 15984 ) / 34648 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 52 \nu^{11} + 126 \nu^{10} - 161 \nu^{9} + 120 \nu^{8} + 776 \nu^{7} - 718 \nu^{6} - 536 \nu^{5} + \cdots - 864 ) / 1464 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 5790 \nu^{11} - 1824 \nu^{10} + 473 \nu^{9} - 516 \nu^{8} - 91522 \nu^{7} - 112790 \nu^{6} + \cdots + 404496 ) / 103944 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 118 \nu^{11} + 90 \nu^{10} - 53 \nu^{9} + 32 \nu^{8} + 1866 \nu^{7} + 1416 \nu^{6} - 1364 \nu^{5} + \cdots - 5172 ) / 1704 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 14137 \nu^{11} + 3520 \nu^{10} - 77 \nu^{9} + 84 \nu^{8} + 226010 \nu^{7} + 282250 \nu^{6} + \cdots - 1015848 ) / 103944 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 7882 \nu^{11} + 5055 \nu^{10} - 4456 \nu^{9} + 2886 \nu^{8} + 127101 \nu^{7} + 103246 \nu^{6} + \cdots - 498240 ) / 51972 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 18668 \nu^{11} - 14130 \nu^{10} + 7753 \nu^{9} - 5308 \nu^{8} - 292962 \nu^{7} - 224016 \nu^{6} + \cdots + 541068 ) / 103944 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 18707 \nu^{11} + 14250 \nu^{10} - 8297 \nu^{9} + 5114 \nu^{8} + 295450 \nu^{7} + 224484 \nu^{6} + \cdots - 548532 ) / 103944 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 2 \beta_{11} + \beta_{10} + \beta_{9} - 2 \beta_{8} - \beta_{7} - \beta_{6} + \beta_{5} + 4 \beta_{4} + \cdots + 1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 8 \beta_{11} - 4 \beta_{10} - 2 \beta_{9} + 4 \beta_{8} + 10 \beta_{7} + 5 \beta_{6} + 4 \beta_{5} + \cdots + 5 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{11} - \beta_{10} + 13\beta_{7} + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 19 \beta_{11} - 8 \beta_{10} + 16 \beta_{9} - 38 \beta_{8} + 29 \beta_{7} - 58 \beta_{6} - 8 \beta_{5} + \cdots + 58 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{9} - 32\beta_{8} - 62\beta_{6} + 32\beta_{4} - 62\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 94 \beta_{11} - 35 \beta_{10} + 35 \beta_{9} - 94 \beta_{8} + 155 \beta_{7} - 155 \beta_{6} + \cdots - 155 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -166\beta_{11} - 48\beta_{10} + 306\beta_{7} + 48\beta_{3} - 166\beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 944 \beta_{11} - 328 \beta_{10} + 164 \beta_{9} - 472 \beta_{8} + 1612 \beta_{7} - 806 \beta_{6} + \cdots + 806 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 262\beta_{9} - 852\beta_{8} - 1534\beta_{6} - 262\beta_{5} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 2386 \beta_{11} + 800 \beta_{10} + 1600 \beta_{9} - 4772 \beta_{8} - 4142 \beta_{7} - 8284 \beta_{6} + \cdots - 8284 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-\beta_{7}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
316.1
−0.180407 0.673288i
2.17840 0.583700i
−0.403293 1.50511i
−1.50511 + 0.403293i
0.583700 + 2.17840i
−0.673288 + 0.180407i
−0.180407 + 0.673288i
2.17840 + 0.583700i
−0.403293 + 1.50511i
−1.50511 0.403293i
0.583700 2.17840i
−0.673288 0.180407i
−2.17731 1.25707i −0.757068 + 1.31128i 2.16044 + 3.74200i 1.00000i 3.29674 1.90337i −2.87597 + 1.66044i 5.83502i 0.353695 + 0.612617i −1.25707 + 2.17731i
316.2 −1.80664 1.04307i 1.54307 2.67267i 1.17597 + 2.03684i 1.00000i −5.57553 + 3.21903i 1.17081 0.675970i 0.734191i −3.26210 5.65012i 1.04307 1.80664i
316.3 −0.495361 0.285997i 0.214003 0.370665i −0.836412 1.44871i 1.00000i −0.212018 + 0.122408i 2.31473 1.33641i 2.10083i 1.40841 + 2.43943i −0.285997 + 0.495361i
316.4 0.495361 + 0.285997i 0.214003 0.370665i −0.836412 1.44871i 1.00000i 0.212018 0.122408i −2.31473 + 1.33641i 2.10083i 1.40841 + 2.43943i −0.285997 + 0.495361i
316.5 1.80664 + 1.04307i 1.54307 2.67267i 1.17597 + 2.03684i 1.00000i 5.57553 3.21903i −1.17081 + 0.675970i 0.734191i −3.26210 5.65012i 1.04307 1.80664i
316.6 2.17731 + 1.25707i −0.757068 + 1.31128i 2.16044 + 3.74200i 1.00000i −3.29674 + 1.90337i 2.87597 1.66044i 5.83502i 0.353695 + 0.612617i −1.25707 + 2.17731i
361.1 −2.17731 + 1.25707i −0.757068 1.31128i 2.16044 3.74200i 1.00000i 3.29674 + 1.90337i −2.87597 1.66044i 5.83502i 0.353695 0.612617i −1.25707 2.17731i
361.2 −1.80664 + 1.04307i 1.54307 + 2.67267i 1.17597 2.03684i 1.00000i −5.57553 3.21903i 1.17081 + 0.675970i 0.734191i −3.26210 + 5.65012i 1.04307 + 1.80664i
361.3 −0.495361 + 0.285997i 0.214003 + 0.370665i −0.836412 + 1.44871i 1.00000i −0.212018 0.122408i 2.31473 + 1.33641i 2.10083i 1.40841 2.43943i −0.285997 0.495361i
361.4 0.495361 0.285997i 0.214003 + 0.370665i −0.836412 + 1.44871i 1.00000i 0.212018 + 0.122408i −2.31473 1.33641i 2.10083i 1.40841 2.43943i −0.285997 0.495361i
361.5 1.80664 1.04307i 1.54307 + 2.67267i 1.17597 2.03684i 1.00000i 5.57553 + 3.21903i −1.17081 0.675970i 0.734191i −3.26210 + 5.65012i 1.04307 + 1.80664i
361.6 2.17731 1.25707i −0.757068 1.31128i 2.16044 3.74200i 1.00000i −3.29674 1.90337i 2.87597 + 1.66044i 5.83502i 0.353695 0.612617i −1.25707 2.17731i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 316.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 845.2.m.h 12
13.b even 2 1 inner 845.2.m.h 12
13.c even 3 1 65.2.c.a 6
13.c even 3 1 inner 845.2.m.h 12
13.d odd 4 1 845.2.e.i 6
13.d odd 4 1 845.2.e.k 6
13.e even 6 1 65.2.c.a 6
13.e even 6 1 inner 845.2.m.h 12
13.f odd 12 1 845.2.a.i 3
13.f odd 12 1 845.2.a.k 3
13.f odd 12 1 845.2.e.i 6
13.f odd 12 1 845.2.e.k 6
39.h odd 6 1 585.2.b.g 6
39.i odd 6 1 585.2.b.g 6
39.k even 12 1 7605.2.a.bs 3
39.k even 12 1 7605.2.a.cc 3
52.i odd 6 1 1040.2.k.d 6
52.j odd 6 1 1040.2.k.d 6
65.l even 6 1 325.2.c.g 6
65.n even 6 1 325.2.c.g 6
65.q odd 12 1 325.2.d.e 6
65.q odd 12 1 325.2.d.f 6
65.r odd 12 1 325.2.d.e 6
65.r odd 12 1 325.2.d.f 6
65.s odd 12 1 4225.2.a.bc 3
65.s odd 12 1 4225.2.a.be 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.c.a 6 13.c even 3 1
65.2.c.a 6 13.e even 6 1
325.2.c.g 6 65.l even 6 1
325.2.c.g 6 65.n even 6 1
325.2.d.e 6 65.q odd 12 1
325.2.d.e 6 65.r odd 12 1
325.2.d.f 6 65.q odd 12 1
325.2.d.f 6 65.r odd 12 1
585.2.b.g 6 39.h odd 6 1
585.2.b.g 6 39.i odd 6 1
845.2.a.i 3 13.f odd 12 1
845.2.a.k 3 13.f odd 12 1
845.2.e.i 6 13.d odd 4 1
845.2.e.i 6 13.f odd 12 1
845.2.e.k 6 13.d odd 4 1
845.2.e.k 6 13.f odd 12 1
845.2.m.h 12 1.a even 1 1 trivial
845.2.m.h 12 13.b even 2 1 inner
845.2.m.h 12 13.c even 3 1 inner
845.2.m.h 12 13.e even 6 1 inner
1040.2.k.d 6 52.i odd 6 1
1040.2.k.d 6 52.j odd 6 1
4225.2.a.bc 3 65.s odd 12 1
4225.2.a.be 3 65.s odd 12 1
7605.2.a.bs 3 39.k even 12 1
7605.2.a.cc 3 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} - 11T_{2}^{10} + 90T_{2}^{8} - 323T_{2}^{6} + 862T_{2}^{4} - 279T_{2}^{2} + 81 \) acting on \(S_{2}^{\mathrm{new}}(845, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - 11 T^{10} + \cdots + 81 \) Copy content Toggle raw display
$3$ \( (T^{6} - 2 T^{5} + 8 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{12} - 20 T^{10} + \cdots + 20736 \) Copy content Toggle raw display
$11$ \( T^{12} - 48 T^{10} + \cdots + 8503056 \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( (T^{6} + 4 T^{5} + \cdots + 9216)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} - 44 T^{10} + \cdots + 1296 \) Copy content Toggle raw display
$23$ \( (T^{6} + 8 T^{5} + 48 T^{4} + \cdots + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} - 2 T^{5} + \cdots + 144)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 56 T^{4} + \cdots + 36)^{2} \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 2702336256 \) Copy content Toggle raw display
$41$ \( T^{12} - 92 T^{10} + \cdots + 26873856 \) Copy content Toggle raw display
$43$ \( (T^{6} + 12 T^{5} + 132 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} + 20 T^{4} + \cdots + 144)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} - 6 T^{2} - 60 T - 72)^{4} \) Copy content Toggle raw display
$59$ \( T^{12} - 84 T^{10} + \cdots + 104976 \) Copy content Toggle raw display
$61$ \( (T^{6} - 6 T^{5} + \cdots + 5776)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 136048896 \) Copy content Toggle raw display
$71$ \( T^{12} - 44 T^{10} + \cdots + 1296 \) Copy content Toggle raw display
$73$ \( (T^{6} + 296 T^{4} + \cdots + 266256)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 12 T^{2} + \cdots + 32)^{4} \) Copy content Toggle raw display
$83$ \( (T^{6} + 156 T^{4} + \cdots + 1296)^{2} \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 6879707136 \) Copy content Toggle raw display
$97$ \( T^{12} - 140 T^{10} + \cdots + 331776 \) Copy content Toggle raw display
show more
show less