L(s) = 1 | + (−0.134 − 0.232i)2-s + (0.301 + 0.522i)3-s + (0.963 − 1.66i)4-s + (0.0810 − 0.140i)6-s + (0.715 − 1.23i)7-s − 1.05·8-s + (1.31 − 2.28i)9-s + (0.0810 + 0.140i)11-s + 1.16·12-s + (−2.41 + 2.67i)13-s − 0.384·14-s + (−1.78 − 3.09i)16-s + (1.41 − 2.44i)17-s − 0.708·18-s + (1.96 − 3.40i)19-s + ⋯ |
L(s) = 1 | + (−0.0950 − 0.164i)2-s + (0.174 + 0.301i)3-s + (0.481 − 0.834i)4-s + (0.0330 − 0.0573i)6-s + (0.270 − 0.468i)7-s − 0.373·8-s + (0.439 − 0.761i)9-s + (0.0244 + 0.0423i)11-s + 0.335·12-s + (−0.670 + 0.742i)13-s − 0.102·14-s + (−0.446 − 0.773i)16-s + (0.342 − 0.592i)17-s − 0.167·18-s + (0.450 − 0.780i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.548 + 0.835i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.548 + 0.835i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.30850 - 0.706297i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.30850 - 0.706297i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (2.41 - 2.67i)T \) |
good | 2 | \( 1 + (0.134 + 0.232i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.301 - 0.522i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.715 + 1.23i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.0810 - 0.140i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.41 + 2.44i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.96 + 3.40i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.36 - 4.09i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.99 - 3.45i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 0.453T + 31T^{2} \) |
| 37 | \( 1 + (2.52 + 4.36i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.29 - 7.43i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.33 + 4.03i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 11.4T + 47T^{2} \) |
| 53 | \( 1 - 7.30T + 53T^{2} \) |
| 59 | \( 1 + (4.98 - 8.63i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.726 - 1.25i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.17 - 5.50i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (7.02 - 12.1i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 7.75T + 73T^{2} \) |
| 79 | \( 1 + 11.2T + 79T^{2} \) |
| 83 | \( 1 - 9.45T + 83T^{2} \) |
| 89 | \( 1 + (-4.33 - 7.50i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.40 - 12.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43021679818646908695468425357, −10.46607022218642748003500768551, −9.605578193179933896889976380921, −9.066455423612529080995609951809, −7.35418158910286248817041685081, −6.79219310570615819398789212897, −5.43033595061470435161501801932, −4.38253418394432217872515640317, −2.88896443726096609350629779134, −1.22249992441489060596500792987,
2.04691440609770714909605607105, 3.21827616564514736408726341938, 4.72953985306795719842202753117, 6.00036447364893754614782741171, 7.19787450661979239667536816647, 7.947163007507300041065290417534, 8.570257900094381620791207790329, 9.970862927052501390850645376729, 10.85277327539404454988032916168, 11.97326256028608982065232159854