L(s) = 1 | + 2.16·2-s + 2.56·3-s − 27.2·4-s + 5.57·6-s + 75.5·7-s − 128.·8-s − 236.·9-s + 624.·11-s − 70.1·12-s + 169·13-s + 163.·14-s + 594.·16-s − 2.34e3·17-s − 512.·18-s − 283.·19-s + 194.·21-s + 1.35e3·22-s − 2.04e3·23-s − 330.·24-s + 366.·26-s − 1.23e3·27-s − 2.06e3·28-s + 6.17e3·29-s + 687.·31-s + 5.40e3·32-s + 1.60e3·33-s − 5.08e3·34-s + ⋯ |
L(s) = 1 | + 0.383·2-s + 0.164·3-s − 0.853·4-s + 0.0631·6-s + 0.583·7-s − 0.710·8-s − 0.972·9-s + 1.55·11-s − 0.140·12-s + 0.277·13-s + 0.223·14-s + 0.580·16-s − 1.96·17-s − 0.372·18-s − 0.180·19-s + 0.0961·21-s + 0.596·22-s − 0.805·23-s − 0.117·24-s + 0.106·26-s − 0.325·27-s − 0.497·28-s + 1.36·29-s + 0.128·31-s + 0.933·32-s + 0.256·33-s − 0.754·34-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
1.985553074 |
L(21) |
≈ |
1.985553074 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169T |
good | 2 | 1−2.16T+32T2 |
| 3 | 1−2.56T+243T2 |
| 7 | 1−75.5T+1.68e4T2 |
| 11 | 1−624.T+1.61e5T2 |
| 17 | 1+2.34e3T+1.41e6T2 |
| 19 | 1+283.T+2.47e6T2 |
| 23 | 1+2.04e3T+6.43e6T2 |
| 29 | 1−6.17e3T+2.05e7T2 |
| 31 | 1−687.T+2.86e7T2 |
| 37 | 1−2.79e3T+6.93e7T2 |
| 41 | 1−8.23e3T+1.15e8T2 |
| 43 | 1−1.32e4T+1.47e8T2 |
| 47 | 1−1.54e4T+2.29e8T2 |
| 53 | 1−9.60e3T+4.18e8T2 |
| 59 | 1−4.01e4T+7.14e8T2 |
| 61 | 1−3.25e4T+8.44e8T2 |
| 67 | 1+1.59e4T+1.35e9T2 |
| 71 | 1−6.02e4T+1.80e9T2 |
| 73 | 1−3.54e4T+2.07e9T2 |
| 79 | 1−6.50e4T+3.07e9T2 |
| 83 | 1+8.60e4T+3.93e9T2 |
| 89 | 1+1.39e5T+5.58e9T2 |
| 97 | 1−8.01e3T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00949111236187945640598256893, −9.603271227361373751662917341526, −8.767665392166807849210134982946, −8.326854363906833199071744918109, −6.68517383539188997965962533736, −5.81703578228648408785844807952, −4.53421273073423733768006889466, −3.87562120534043960472924085283, −2.36928963599832644546840189012, −0.73793836101671324056521906019,
0.73793836101671324056521906019, 2.36928963599832644546840189012, 3.87562120534043960472924085283, 4.53421273073423733768006889466, 5.81703578228648408785844807952, 6.68517383539188997965962533736, 8.326854363906833199071744918109, 8.767665392166807849210134982946, 9.603271227361373751662917341526, 11.00949111236187945640598256893