Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [325,6,Mod(1,325)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(325, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("325.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 325.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 65) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−9.62003 | −10.7175 | 60.5450 | 0 | 103.103 | −18.4289 | −274.604 | −128.135 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | −7.62628 | 29.7832 | 26.1601 | 0 | −227.135 | −171.199 | 44.5366 | 644.042 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | −4.15349 | −29.2293 | −14.7485 | 0 | 121.404 | −42.5171 | 194.170 | 611.349 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | 2.16876 | 2.56930 | −27.2965 | 0 | 5.57220 | 75.5966 | −128.600 | −236.399 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 7.05260 | −22.8190 | 17.7392 | 0 | −160.933 | −141.347 | −100.576 | 277.708 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 10.1784 | 10.4132 | 71.6007 | 0 | 105.990 | 125.896 | 403.073 | −134.565 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 325.6.a.f | 6 | |
5.b | even | 2 | 1 | 65.6.a.e | ✓ | 6 | |
5.c | odd | 4 | 2 | 325.6.b.f | 12 | ||
15.d | odd | 2 | 1 | 585.6.a.k | 6 | ||
20.d | odd | 2 | 1 | 1040.6.a.r | 6 | ||
65.d | even | 2 | 1 | 845.6.a.g | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.6.a.e | ✓ | 6 | 5.b | even | 2 | 1 | |
325.6.a.f | 6 | 1.a | even | 1 | 1 | trivial | |
325.6.b.f | 12 | 5.c | odd | 4 | 2 | ||
585.6.a.k | 6 | 15.d | odd | 2 | 1 | ||
845.6.a.g | 6 | 65.d | even | 2 | 1 | ||
1040.6.a.r | 6 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .