Properties

Label 325.6.a.f
Level 325325
Weight 66
Character orbit 325.a
Self dual yes
Analytic conductor 52.12552.125
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 325=5213 325 = 5^{2} \cdot 13
Weight: k k == 6 6
Character orbit: [χ][\chi] == 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 52.124741439252.1247414392
Analytic rank: 00
Dimension: 66
Coefficient field: Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x5161x4+328x3+6584x210688x47440 x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 65)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β23)q3+(β3+β2β1+23)q4+(β52β4+β3+10)q6+(β5β46β127)q7+(β55β4++29)q8++(1219β53106β4++46690)q99+O(q100) q - \beta_1 q^{2} + (\beta_{2} - 3) q^{3} + (\beta_{3} + \beta_{2} - \beta_1 + 23) q^{4} + (\beta_{5} - 2 \beta_{4} + \beta_{3} + \cdots - 10) q^{6} + (\beta_{5} - \beta_{4} - 6 \beta_1 - 27) q^{7} + ( - \beta_{5} - 5 \beta_{4} + \cdots + 29) q^{8}+ \cdots + ( - 1219 \beta_{5} - 3106 \beta_{4} + \cdots + 46690) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q2q220q3+134q452q6172q7+138q8+1034q9+800q11+832q12+1014q13+2108q14+322q164396q176142q18+5304q19+1072q21++301264q99+O(q100) 6 q - 2 q^{2} - 20 q^{3} + 134 q^{4} - 52 q^{6} - 172 q^{7} + 138 q^{8} + 1034 q^{9} + 800 q^{11} + 832 q^{12} + 1014 q^{13} + 2108 q^{14} + 322 q^{16} - 4396 q^{17} - 6142 q^{18} + 5304 q^{19} + 1072 q^{21}+ \cdots + 301264 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x5161x4+328x3+6584x210688x47440 x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν52ν4+125ν3+212ν22956ν4800)/240 ( -\nu^{5} - 2\nu^{4} + 125\nu^{3} + 212\nu^{2} - 2956\nu - 4800 ) / 240 Copy content Toggle raw display
β3\beta_{3}== (ν5+2ν4125ν3+28ν2+3196ν8400)/240 ( \nu^{5} + 2\nu^{4} - 125\nu^{3} + 28\nu^{2} + 3196\nu - 8400 ) / 240 Copy content Toggle raw display
β4\beta_{4}== (ν4+10ν3+125ν2808ν2260)/60 ( -\nu^{4} + 10\nu^{3} + 125\nu^{2} - 808\nu - 2260 ) / 60 Copy content Toggle raw display
β5\beta_{5}== (ν4+2ν3101ν2116ν+1288)/12 ( \nu^{4} + 2\nu^{3} - 101\nu^{2} - 116\nu + 1288 ) / 12 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2β1+55 \beta_{3} + \beta_{2} - \beta _1 + 55 Copy content Toggle raw display
ν3\nu^{3}== β5+5β42β32β2+79β129 \beta_{5} + 5\beta_{4} - 2\beta_{3} - 2\beta_{2} + 79\beta _1 - 29 Copy content Toggle raw display
ν4\nu^{4}== 10β510β4+105β3+105β2143β1+4325 10\beta_{5} - 10\beta_{4} + 105\beta_{3} + 105\beta_{2} - 143\beta _1 + 4325 Copy content Toggle raw display
ν5\nu^{5}== 105β5+645β4248β3488β2+6993β15415 105\beta_{5} + 645\beta_{4} - 248\beta_{3} - 488\beta_{2} + 6993\beta _1 - 5415 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
9.62003
7.62628
4.15349
−2.16876
−7.05260
−10.1784
−9.62003 −10.7175 60.5450 0 103.103 −18.4289 −274.604 −128.135 0
1.2 −7.62628 29.7832 26.1601 0 −227.135 −171.199 44.5366 644.042 0
1.3 −4.15349 −29.2293 −14.7485 0 121.404 −42.5171 194.170 611.349 0
1.4 2.16876 2.56930 −27.2965 0 5.57220 75.5966 −128.600 −236.399 0
1.5 7.05260 −22.8190 17.7392 0 −160.933 −141.347 −100.576 277.708 0
1.6 10.1784 10.4132 71.6007 0 105.990 125.896 403.073 −134.565 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.6.a.f 6
5.b even 2 1 65.6.a.e 6
5.c odd 4 2 325.6.b.f 12
15.d odd 2 1 585.6.a.k 6
20.d odd 2 1 1040.6.a.r 6
65.d even 2 1 845.6.a.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.6.a.e 6 5.b even 2 1
325.6.a.f 6 1.a even 1 1 trivial
325.6.b.f 12 5.c odd 4 2
585.6.a.k 6 15.d odd 2 1
845.6.a.g 6 65.d even 2 1
1040.6.a.r 6 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26+2T25161T24328T23+6584T22+10688T247440 T_{2}^{6} + 2T_{2}^{5} - 161T_{2}^{4} - 328T_{2}^{3} + 6584T_{2}^{2} + 10688T_{2} - 47440 acting on S6new(Γ0(325))S_{6}^{\mathrm{new}}(\Gamma_0(325)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+2T5+47440 T^{6} + 2 T^{5} + \cdots - 47440 Copy content Toggle raw display
33 T6+20T5+5696136 T^{6} + 20 T^{5} + \cdots - 5696136 Copy content Toggle raw display
55 T6 T^{6} Copy content Toggle raw display
77 T6++180452981952 T^{6} + \cdots + 180452981952 Copy content Toggle raw display
1111 T6+674919089487832 T^{6} + \cdots - 674919089487832 Copy content Toggle raw display
1313 (T169)6 (T - 169)^{6} Copy content Toggle raw display
1717 T6++12 ⁣ ⁣24 T^{6} + \cdots + 12\!\cdots\!24 Copy content Toggle raw display
1919 T6++58 ⁣ ⁣40 T^{6} + \cdots + 58\!\cdots\!40 Copy content Toggle raw display
2323 T6++84 ⁣ ⁣48 T^{6} + \cdots + 84\!\cdots\!48 Copy content Toggle raw display
2929 T6+24 ⁣ ⁣20 T^{6} + \cdots - 24\!\cdots\!20 Copy content Toggle raw display
3131 T6+47 ⁣ ⁣84 T^{6} + \cdots - 47\!\cdots\!84 Copy content Toggle raw display
3737 T6+39 ⁣ ⁣12 T^{6} + \cdots - 39\!\cdots\!12 Copy content Toggle raw display
4141 T6+78 ⁣ ⁣32 T^{6} + \cdots - 78\!\cdots\!32 Copy content Toggle raw display
4343 T6+34 ⁣ ⁣28 T^{6} + \cdots - 34\!\cdots\!28 Copy content Toggle raw display
4747 T6++16 ⁣ ⁣00 T^{6} + \cdots + 16\!\cdots\!00 Copy content Toggle raw display
5353 T6+51 ⁣ ⁣36 T^{6} + \cdots - 51\!\cdots\!36 Copy content Toggle raw display
5959 T6++29 ⁣ ⁣80 T^{6} + \cdots + 29\!\cdots\!80 Copy content Toggle raw display
6161 T6+11 ⁣ ⁣68 T^{6} + \cdots - 11\!\cdots\!68 Copy content Toggle raw display
6767 T6+31 ⁣ ⁣72 T^{6} + \cdots - 31\!\cdots\!72 Copy content Toggle raw display
7171 T6+14 ⁣ ⁣12 T^{6} + \cdots - 14\!\cdots\!12 Copy content Toggle raw display
7373 T6+20 ⁣ ⁣08 T^{6} + \cdots - 20\!\cdots\!08 Copy content Toggle raw display
7979 T6++22 ⁣ ⁣80 T^{6} + \cdots + 22\!\cdots\!80 Copy content Toggle raw display
8383 T6+22 ⁣ ⁣12 T^{6} + \cdots - 22\!\cdots\!12 Copy content Toggle raw display
8989 T6+21 ⁣ ⁣00 T^{6} + \cdots - 21\!\cdots\!00 Copy content Toggle raw display
9797 T6++10 ⁣ ⁣20 T^{6} + \cdots + 10\!\cdots\!20 Copy content Toggle raw display
show more
show less