L(s) = 1 | − 2·2-s − 20·3-s − 27·4-s + 40·6-s − 172·7-s + 124·8-s − 12·9-s + 800·11-s + 540·12-s + 1.01e3·13-s + 344·14-s − 763·16-s − 4.39e3·17-s + 24·18-s + 5.30e3·19-s + 3.44e3·21-s − 1.60e3·22-s + 1.14e3·23-s − 2.48e3·24-s − 2.02e3·26-s + 4.26e3·27-s + 4.64e3·28-s − 3.66e3·29-s + 1.66e4·31-s + 458·32-s − 1.60e4·33-s + 8.79e3·34-s + ⋯ |
L(s) = 1 | − 0.353·2-s − 1.28·3-s − 0.843·4-s + 0.453·6-s − 1.32·7-s + 0.685·8-s − 0.0493·9-s + 1.99·11-s + 1.08·12-s + 1.66·13-s + 0.469·14-s − 0.745·16-s − 3.68·17-s + 0.0174·18-s + 3.37·19-s + 1.70·21-s − 0.704·22-s + 0.449·23-s − 0.878·24-s − 0.588·26-s + 1.12·27-s + 1.11·28-s − 0.809·29-s + 3.11·31-s + 0.0790·32-s − 2.55·33-s + 1.30·34-s + ⋯ |
Λ(s)=(=((512⋅136)s/2ΓC(s)6L(s)Λ(6−s)
Λ(s)=(=((512⋅136)s/2ΓC(s+5/2)6L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
5.633660258 |
L(21) |
≈ |
5.633660258 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | (1−p2T)6 |
good | 2 | 1+pT+31T2−p3T3+167p3T4−5p6T5+2507p4T6−5p11T7+167p13T8−p18T9+31p20T10+p26T11+p30T12 |
| 3 | 1+20T+412T2+4220T3+6553pT4−94360p2T5−596312p3T6−94360p7T7+6553p11T8+4220p15T9+412p20T10+20p25T11+p30T12 |
| 7 | 1+172T+79134T2+10856548T3+409892745pT4+317015702232T5+61415726406116T6+317015702232p5T7+409892745p11T8+10856548p15T9+79134p20T10+172p25T11+p30T12 |
| 11 | 1−800T+759568T2−406608064T3+249396661771T4−103203903134944T5+48608265340441376T6−103203903134944p5T7+249396661771p10T8−406608064p15T9+759568p20T10−800p25T11+p30T12 |
| 17 | 1+4396T+13388314T2+30247747580T3+55454091910447T4+84911134688114072T5+10⋯96T6+84911134688114072p5T7+55454091910447p10T8+30247747580p15T9+13388314p20T10+4396p25T11+p30T12 |
| 19 | 1−5304T+935248pT2−41459051976T3+81939580759323T4−137801885409410896T5+22⋯68T6−137801885409410896p5T7+81939580759323p10T8−41459051976p15T9+935248p21T10−5304p25T11+p30T12 |
| 23 | 1−1140T+26990372T2−27334511148T3+346087829393987T4−321185337113879016T5+27⋯88T6−321185337113879016p5T7+346087829393987p10T8−27334511148p15T9+26990372p20T10−1140p25T11+p30T12 |
| 29 | 1+3664T+70215246T2+212100467280T3+2582215649047719T4+6374882876649641504T5+61⋯48T6+6374882876649641504p5T7+2582215649047719p10T8+212100467280p15T9+70215246p20T10+3664p25T11+p30T12 |
| 31 | 1−16664T+222991608T2−1841948763592T3+13891289359405827T4−80310268298937076688T5+47⋯56T6−80310268298937076688p5T7+13891289359405827p10T8−1841948763592p15T9+222991608p20T10−16664p25T11+p30T12 |
| 37 | 1+4488T+268756262T2+1050793017672T3+36014260500286007T4+11⋯76T5+30⋯96T6+11⋯76p5T7+36014260500286007p10T8+1050793017672p15T9+268756262p20T10+4488p25T11+p30T12 |
| 41 | 1−12436T+438551018T2−4844551362468T3+106540073505916031T4−94⋯04T5+15⋯96T6−94⋯04p5T7+106540073505916031p10T8−4844551362468p15T9+438551018p20T10−12436p25T11+p30T12 |
| 43 | 1+1516T+118385308T2+1205424018852T3+22780555260448539T4−19968699827127017192T5+44⋯56T6−19968699827127017192p5T7+22780555260448539p10T8+1205424018852p15T9+118385308p20T10+1516p25T11+p30T12 |
| 47 | 1+212T+868921678T2−815484002756T3+387087648470244367T4−37⋯72T5+11⋯80T6−37⋯72p5T7+387087648470244367p10T8−815484002756p15T9+868921678p20T10+212p25T11+p30T12 |
| 53 | 1−15612T+1302611762T2−3861503238396T3+464446823633000119T4+86⋯24T5+79⋯36T6+86⋯24p5T7+464446823633000119p10T8−3861503238396p15T9+1302611762p20T10−15612p25T11+p30T12 |
| 59 | 1+11896T+2693780976T2+10411916715592T3+3369278181997078251T4+78121391922971510608T5+28⋯24T6+78121391922971510608p5T7+3369278181997078251p10T8+10411916715592p15T9+2693780976p20T10+11896p25T11+p30T12 |
| 61 | 1−57232T+5236420718T2−219172905169808T3+11261991887609202663T4−35⋯04T5+12⋯24T6−35⋯04p5T7+11261991887609202663p10T8−219172905169808p15T9+5236420718p20T10−57232p25T11+p30T12 |
| 67 | 1−25428T+5004079118T2−103351564549004T3+12139682587774178471T4−19⋯60T5+19⋯44T6−19⋯60p5T7+12139682587774178471p10T8−103351564549004p15T9+5004079118p20T10−25428p25T11+p30T12 |
| 71 | 1−214104T+27159407320T2−2418426473306760T3+16⋯99T4−94⋯00T5+44⋯48T6−94⋯00p5T7+16⋯99p10T8−2418426473306760p15T9+27159407320p20T10−214104p25T11+p30T12 |
| 73 | 1+60808T+7683503646T2+466685836081256T3+32200043594087922015T4+16⋯20T5+83⋯88T6+16⋯20p5T7+32200043594087922015p10T8+466685836081256p15T9+7683503646p20T10+60808p25T11+p30T12 |
| 79 | 1−456pT+11615543106T2−230917448345448T3+62062444497721483599T4−74⋯44T5+22⋯68T6−74⋯44p5T7+62062444497721483599p10T8−230917448345448p15T9+11615543106p20T10−456p26T11+p30T12 |
| 83 | 1+34684T+7848433574T2+97618429712676T3+32967984989601535079T4−25⋯48T5+13⋯44T6−25⋯48p5T7+32967984989601535079p10T8+97618429712676p15T9+7848433574p20T10+34684p25T11+p30T12 |
| 89 | 1+52028T+7379546418T2+426261312231404T3+56427851113243582527T4+36⋯68T5+30⋯08T6+36⋯68p5T7+56427851113243582527p10T8+426261312231404p15T9+7379546418p20T10+52028p25T11+p30T12 |
| 97 | 1+129316T+26692221250T2+3616210172433684T3+39⋯07T4+43⋯40T5+41⋯04T6+43⋯40p5T7+39⋯07p10T8+3616210172433684p15T9+26692221250p20T10+129316p25T11+p30T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.37494558120357542643514262308, −5.07534695243356204283293911182, −4.99031563794642622927811443719, −4.91482120844438773169771813983, −4.81043956800408024057518885081, −4.53421273073423733768006889466, −4.21394190890656730350530220217, −4.03169695043063648149652713051, −3.87562120534043960472924085283, −3.86860504976223299157370362557, −3.47802380528109059262488724646, −3.26609505600707075345612751489, −3.14400769858179058408582426565, −2.82466216104059592068167792476, −2.64595666002383962832282486320, −2.36928963599832644546840189012, −2.12146003094111640263027226297, −1.70407370363802893987987347740, −1.49785837399324914407825110159, −1.45201455924205559157608851914, −0.915255879415186512158254405173, −0.73793836101671324056521906019, −0.52474212714070350780990581765, −0.44491041399355830094882298927, −0.43909575249550549659992038078,
0.43909575249550549659992038078, 0.44491041399355830094882298927, 0.52474212714070350780990581765, 0.73793836101671324056521906019, 0.915255879415186512158254405173, 1.45201455924205559157608851914, 1.49785837399324914407825110159, 1.70407370363802893987987347740, 2.12146003094111640263027226297, 2.36928963599832644546840189012, 2.64595666002383962832282486320, 2.82466216104059592068167792476, 3.14400769858179058408582426565, 3.26609505600707075345612751489, 3.47802380528109059262488724646, 3.86860504976223299157370362557, 3.87562120534043960472924085283, 4.03169695043063648149652713051, 4.21394190890656730350530220217, 4.53421273073423733768006889466, 4.81043956800408024057518885081, 4.91482120844438773169771813983, 4.99031563794642622927811443719, 5.07534695243356204283293911182, 5.37494558120357542643514262308
Plot not available for L-functions of degree greater than 10.