Properties

Label 325.6.a.f.1.1
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(9.62003\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.62003 q^{2} -10.7175 q^{3} +60.5450 q^{4} +103.103 q^{6} -18.4289 q^{7} -274.604 q^{8} -128.135 q^{9} -80.7965 q^{11} -648.891 q^{12} +169.000 q^{13} +177.287 q^{14} +704.257 q^{16} -170.210 q^{17} +1232.67 q^{18} +722.993 q^{19} +197.512 q^{21} +777.265 q^{22} +519.385 q^{23} +2943.06 q^{24} -1625.79 q^{26} +3977.64 q^{27} -1115.78 q^{28} +2392.34 q^{29} -6731.65 q^{31} +2012.35 q^{32} +865.936 q^{33} +1637.42 q^{34} -7757.95 q^{36} -3921.11 q^{37} -6955.22 q^{38} -1811.26 q^{39} -6520.89 q^{41} -1900.07 q^{42} -20998.4 q^{43} -4891.83 q^{44} -4996.50 q^{46} -855.573 q^{47} -7547.87 q^{48} -16467.4 q^{49} +1824.22 q^{51} +10232.1 q^{52} -553.736 q^{53} -38265.0 q^{54} +5060.64 q^{56} -7748.68 q^{57} -23014.4 q^{58} -25934.8 q^{59} -697.362 q^{61} +64758.7 q^{62} +2361.39 q^{63} -41895.1 q^{64} -8330.33 q^{66} +42914.4 q^{67} -10305.3 q^{68} -5566.51 q^{69} +29581.6 q^{71} +35186.4 q^{72} -84016.4 q^{73} +37721.2 q^{74} +43773.6 q^{76} +1488.99 q^{77} +17424.3 q^{78} +37065.0 q^{79} -11493.4 q^{81} +62731.2 q^{82} -94551.6 q^{83} +11958.3 q^{84} +202005. q^{86} -25639.9 q^{87} +22187.0 q^{88} +123136. q^{89} -3114.48 q^{91} +31446.2 q^{92} +72146.4 q^{93} +8230.64 q^{94} -21567.3 q^{96} +29967.6 q^{97} +158417. q^{98} +10352.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 20 q^{3} + 134 q^{4} - 52 q^{6} - 172 q^{7} + 138 q^{8} + 1034 q^{9} + 800 q^{11} + 832 q^{12} + 1014 q^{13} + 2108 q^{14} + 322 q^{16} - 4396 q^{17} - 6142 q^{18} + 5304 q^{19} + 1072 q^{21}+ \cdots + 301264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.62003 −1.70060 −0.850299 0.526301i \(-0.823579\pi\)
−0.850299 + 0.526301i \(0.823579\pi\)
\(3\) −10.7175 −0.687528 −0.343764 0.939056i \(-0.611702\pi\)
−0.343764 + 0.939056i \(0.611702\pi\)
\(4\) 60.5450 1.89203
\(5\) 0 0
\(6\) 103.103 1.16921
\(7\) −18.4289 −0.142152 −0.0710762 0.997471i \(-0.522643\pi\)
−0.0710762 + 0.997471i \(0.522643\pi\)
\(8\) −274.604 −1.51699
\(9\) −128.135 −0.527306
\(10\) 0 0
\(11\) −80.7965 −0.201331 −0.100666 0.994920i \(-0.532097\pi\)
−0.100666 + 0.994920i \(0.532097\pi\)
\(12\) −648.891 −1.30082
\(13\) 169.000 0.277350
\(14\) 177.287 0.241744
\(15\) 0 0
\(16\) 704.257 0.687751
\(17\) −170.210 −0.142844 −0.0714219 0.997446i \(-0.522754\pi\)
−0.0714219 + 0.997446i \(0.522754\pi\)
\(18\) 1232.67 0.896735
\(19\) 722.993 0.459463 0.229731 0.973254i \(-0.426215\pi\)
0.229731 + 0.973254i \(0.426215\pi\)
\(20\) 0 0
\(21\) 197.512 0.0977337
\(22\) 777.265 0.342383
\(23\) 519.385 0.204725 0.102362 0.994747i \(-0.467360\pi\)
0.102362 + 0.994747i \(0.467360\pi\)
\(24\) 2943.06 1.04297
\(25\) 0 0
\(26\) −1625.79 −0.471661
\(27\) 3977.64 1.05006
\(28\) −1115.78 −0.268957
\(29\) 2392.34 0.528236 0.264118 0.964490i \(-0.414919\pi\)
0.264118 + 0.964490i \(0.414919\pi\)
\(30\) 0 0
\(31\) −6731.65 −1.25811 −0.629053 0.777362i \(-0.716557\pi\)
−0.629053 + 0.777362i \(0.716557\pi\)
\(32\) 2012.35 0.347399
\(33\) 865.936 0.138421
\(34\) 1637.42 0.242920
\(35\) 0 0
\(36\) −7757.95 −0.997679
\(37\) −3921.11 −0.470875 −0.235437 0.971890i \(-0.575652\pi\)
−0.235437 + 0.971890i \(0.575652\pi\)
\(38\) −6955.22 −0.781361
\(39\) −1811.26 −0.190686
\(40\) 0 0
\(41\) −6520.89 −0.605825 −0.302913 0.953018i \(-0.597959\pi\)
−0.302913 + 0.953018i \(0.597959\pi\)
\(42\) −1900.07 −0.166206
\(43\) −20998.4 −1.73187 −0.865933 0.500160i \(-0.833275\pi\)
−0.865933 + 0.500160i \(0.833275\pi\)
\(44\) −4891.83 −0.380925
\(45\) 0 0
\(46\) −4996.50 −0.348154
\(47\) −855.573 −0.0564953 −0.0282477 0.999601i \(-0.508993\pi\)
−0.0282477 + 0.999601i \(0.508993\pi\)
\(48\) −7547.87 −0.472848
\(49\) −16467.4 −0.979793
\(50\) 0 0
\(51\) 1824.22 0.0982091
\(52\) 10232.1 0.524755
\(53\) −553.736 −0.0270778 −0.0135389 0.999908i \(-0.504310\pi\)
−0.0135389 + 0.999908i \(0.504310\pi\)
\(54\) −38265.0 −1.78574
\(55\) 0 0
\(56\) 5060.64 0.215643
\(57\) −7748.68 −0.315893
\(58\) −23014.4 −0.898317
\(59\) −25934.8 −0.969957 −0.484978 0.874526i \(-0.661173\pi\)
−0.484978 + 0.874526i \(0.661173\pi\)
\(60\) 0 0
\(61\) −697.362 −0.0239957 −0.0119979 0.999928i \(-0.503819\pi\)
−0.0119979 + 0.999928i \(0.503819\pi\)
\(62\) 64758.7 2.13953
\(63\) 2361.39 0.0749578
\(64\) −41895.1 −1.27854
\(65\) 0 0
\(66\) −8330.33 −0.235398
\(67\) 42914.4 1.16793 0.583963 0.811780i \(-0.301501\pi\)
0.583963 + 0.811780i \(0.301501\pi\)
\(68\) −10305.3 −0.270265
\(69\) −5566.51 −0.140754
\(70\) 0 0
\(71\) 29581.6 0.696427 0.348214 0.937415i \(-0.386788\pi\)
0.348214 + 0.937415i \(0.386788\pi\)
\(72\) 35186.4 0.799916
\(73\) −84016.4 −1.84526 −0.922629 0.385690i \(-0.873964\pi\)
−0.922629 + 0.385690i \(0.873964\pi\)
\(74\) 37721.2 0.800768
\(75\) 0 0
\(76\) 43773.6 0.869318
\(77\) 1488.99 0.0286197
\(78\) 17424.3 0.324280
\(79\) 37065.0 0.668184 0.334092 0.942540i \(-0.391570\pi\)
0.334092 + 0.942540i \(0.391570\pi\)
\(80\) 0 0
\(81\) −11493.4 −0.194643
\(82\) 62731.2 1.03027
\(83\) −94551.6 −1.50652 −0.753258 0.657725i \(-0.771519\pi\)
−0.753258 + 0.657725i \(0.771519\pi\)
\(84\) 11958.3 0.184915
\(85\) 0 0
\(86\) 202005. 2.94521
\(87\) −25639.9 −0.363177
\(88\) 22187.0 0.305416
\(89\) 123136. 1.64782 0.823910 0.566720i \(-0.191788\pi\)
0.823910 + 0.566720i \(0.191788\pi\)
\(90\) 0 0
\(91\) −3114.48 −0.0394260
\(92\) 31446.2 0.387345
\(93\) 72146.4 0.864983
\(94\) 8230.64 0.0960758
\(95\) 0 0
\(96\) −21567.3 −0.238846
\(97\) 29967.6 0.323387 0.161694 0.986841i \(-0.448304\pi\)
0.161694 + 0.986841i \(0.448304\pi\)
\(98\) 158417. 1.66623
\(99\) 10352.9 0.106163
\(100\) 0 0
\(101\) 151193. 1.47478 0.737390 0.675468i \(-0.236058\pi\)
0.737390 + 0.675468i \(0.236058\pi\)
\(102\) −17549.0 −0.167014
\(103\) 11776.4 0.109375 0.0546876 0.998504i \(-0.482584\pi\)
0.0546876 + 0.998504i \(0.482584\pi\)
\(104\) −46408.0 −0.420736
\(105\) 0 0
\(106\) 5326.95 0.0460484
\(107\) −146823. −1.23975 −0.619876 0.784700i \(-0.712817\pi\)
−0.619876 + 0.784700i \(0.712817\pi\)
\(108\) 240826. 1.98676
\(109\) 39831.5 0.321115 0.160558 0.987026i \(-0.448671\pi\)
0.160558 + 0.987026i \(0.448671\pi\)
\(110\) 0 0
\(111\) 42024.5 0.323739
\(112\) −12978.7 −0.0977654
\(113\) −11885.0 −0.0875594 −0.0437797 0.999041i \(-0.513940\pi\)
−0.0437797 + 0.999041i \(0.513940\pi\)
\(114\) 74542.5 0.537207
\(115\) 0 0
\(116\) 144844. 0.999440
\(117\) −21654.9 −0.146248
\(118\) 249493. 1.64951
\(119\) 3136.77 0.0203056
\(120\) 0 0
\(121\) −154523. −0.959466
\(122\) 6708.65 0.0408071
\(123\) 69887.6 0.416522
\(124\) −407568. −2.38038
\(125\) 0 0
\(126\) −22716.7 −0.127473
\(127\) 245216. 1.34908 0.674541 0.738237i \(-0.264341\pi\)
0.674541 + 0.738237i \(0.264341\pi\)
\(128\) 338637. 1.82688
\(129\) 225050. 1.19071
\(130\) 0 0
\(131\) −43517.0 −0.221555 −0.110777 0.993845i \(-0.535334\pi\)
−0.110777 + 0.993845i \(0.535334\pi\)
\(132\) 52428.1 0.261896
\(133\) −13324.0 −0.0653137
\(134\) −412837. −1.98617
\(135\) 0 0
\(136\) 46740.2 0.216692
\(137\) 323142. 1.47093 0.735466 0.677562i \(-0.236964\pi\)
0.735466 + 0.677562i \(0.236964\pi\)
\(138\) 53550.0 0.239366
\(139\) 244416. 1.07298 0.536490 0.843907i \(-0.319750\pi\)
0.536490 + 0.843907i \(0.319750\pi\)
\(140\) 0 0
\(141\) 9169.60 0.0388421
\(142\) −284576. −1.18434
\(143\) −13654.6 −0.0558392
\(144\) −90240.2 −0.362655
\(145\) 0 0
\(146\) 808240. 3.13804
\(147\) 176489. 0.673634
\(148\) −237404. −0.890909
\(149\) −172702. −0.637282 −0.318641 0.947875i \(-0.603226\pi\)
−0.318641 + 0.947875i \(0.603226\pi\)
\(150\) 0 0
\(151\) 256350. 0.914935 0.457468 0.889226i \(-0.348757\pi\)
0.457468 + 0.889226i \(0.348757\pi\)
\(152\) −198537. −0.696998
\(153\) 21809.9 0.0753224
\(154\) −14324.1 −0.0486706
\(155\) 0 0
\(156\) −109663. −0.360784
\(157\) −333694. −1.08043 −0.540217 0.841525i \(-0.681658\pi\)
−0.540217 + 0.841525i \(0.681658\pi\)
\(158\) −356566. −1.13631
\(159\) 5934.66 0.0186167
\(160\) 0 0
\(161\) −9571.70 −0.0291021
\(162\) 110567. 0.331009
\(163\) −95114.8 −0.280401 −0.140200 0.990123i \(-0.544775\pi\)
−0.140200 + 0.990123i \(0.544775\pi\)
\(164\) −394807. −1.14624
\(165\) 0 0
\(166\) 909590. 2.56198
\(167\) 488741. 1.35609 0.678043 0.735022i \(-0.262828\pi\)
0.678043 + 0.735022i \(0.262828\pi\)
\(168\) −54237.4 −0.148261
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −92641.0 −0.242277
\(172\) −1.27135e6 −3.27675
\(173\) 219573. 0.557780 0.278890 0.960323i \(-0.410033\pi\)
0.278890 + 0.960323i \(0.410033\pi\)
\(174\) 246657. 0.617618
\(175\) 0 0
\(176\) −56901.5 −0.138466
\(177\) 277956. 0.666872
\(178\) −1.18457e6 −2.80228
\(179\) 217092. 0.506421 0.253210 0.967411i \(-0.418514\pi\)
0.253210 + 0.967411i \(0.418514\pi\)
\(180\) 0 0
\(181\) −647747. −1.46963 −0.734816 0.678266i \(-0.762732\pi\)
−0.734816 + 0.678266i \(0.762732\pi\)
\(182\) 29961.4 0.0670477
\(183\) 7473.98 0.0164977
\(184\) −142625. −0.310564
\(185\) 0 0
\(186\) −694051. −1.47099
\(187\) 13752.3 0.0287589
\(188\) −51800.7 −0.106891
\(189\) −73303.5 −0.149269
\(190\) 0 0
\(191\) −675866. −1.34053 −0.670266 0.742121i \(-0.733820\pi\)
−0.670266 + 0.742121i \(0.733820\pi\)
\(192\) 449010. 0.879029
\(193\) 69360.2 0.134035 0.0670174 0.997752i \(-0.478652\pi\)
0.0670174 + 0.997752i \(0.478652\pi\)
\(194\) −288289. −0.549952
\(195\) 0 0
\(196\) −997017. −1.85380
\(197\) 1.07612e6 1.97559 0.987794 0.155766i \(-0.0497846\pi\)
0.987794 + 0.155766i \(0.0497846\pi\)
\(198\) −99595.1 −0.180541
\(199\) −290642. −0.520266 −0.260133 0.965573i \(-0.583766\pi\)
−0.260133 + 0.965573i \(0.583766\pi\)
\(200\) 0 0
\(201\) −459934. −0.802982
\(202\) −1.45448e6 −2.50801
\(203\) −44088.2 −0.0750901
\(204\) 110447. 0.185815
\(205\) 0 0
\(206\) −113289. −0.186003
\(207\) −66551.6 −0.107953
\(208\) 119019. 0.190748
\(209\) −58415.3 −0.0925041
\(210\) 0 0
\(211\) 1435.58 0.00221983 0.00110992 0.999999i \(-0.499647\pi\)
0.00110992 + 0.999999i \(0.499647\pi\)
\(212\) −33525.9 −0.0512320
\(213\) −317040. −0.478813
\(214\) 1.41244e6 2.10832
\(215\) 0 0
\(216\) −1.09227e6 −1.59293
\(217\) 124057. 0.178843
\(218\) −383181. −0.546087
\(219\) 900445. 1.26867
\(220\) 0 0
\(221\) −28765.4 −0.0396178
\(222\) −404277. −0.550550
\(223\) −417548. −0.562270 −0.281135 0.959668i \(-0.590711\pi\)
−0.281135 + 0.959668i \(0.590711\pi\)
\(224\) −37085.4 −0.0493836
\(225\) 0 0
\(226\) 114334. 0.148903
\(227\) 614640. 0.791691 0.395846 0.918317i \(-0.370452\pi\)
0.395846 + 0.918317i \(0.370452\pi\)
\(228\) −469144. −0.597680
\(229\) 1.09898e6 1.38484 0.692421 0.721494i \(-0.256544\pi\)
0.692421 + 0.721494i \(0.256544\pi\)
\(230\) 0 0
\(231\) −15958.2 −0.0196768
\(232\) −656946. −0.801327
\(233\) 790169. 0.953521 0.476760 0.879033i \(-0.341811\pi\)
0.476760 + 0.879033i \(0.341811\pi\)
\(234\) 208321. 0.248710
\(235\) 0 0
\(236\) −1.57022e6 −1.83519
\(237\) −397244. −0.459395
\(238\) −30175.9 −0.0345316
\(239\) 1.62836e6 1.84397 0.921987 0.387221i \(-0.126565\pi\)
0.921987 + 0.387221i \(0.126565\pi\)
\(240\) 0 0
\(241\) −208904. −0.231689 −0.115844 0.993267i \(-0.536957\pi\)
−0.115844 + 0.993267i \(0.536957\pi\)
\(242\) 1.48652e6 1.63166
\(243\) −843386. −0.916243
\(244\) −42221.8 −0.0454007
\(245\) 0 0
\(246\) −672321. −0.708336
\(247\) 122186. 0.127432
\(248\) 1.84854e6 1.90853
\(249\) 1.01336e6 1.03577
\(250\) 0 0
\(251\) 1.51514e6 1.51799 0.758993 0.651099i \(-0.225692\pi\)
0.758993 + 0.651099i \(0.225692\pi\)
\(252\) 142971. 0.141823
\(253\) −41964.5 −0.0412175
\(254\) −2.35898e6 −2.29425
\(255\) 0 0
\(256\) −1.91705e6 −1.82824
\(257\) 1.80241e6 1.70224 0.851120 0.524972i \(-0.175924\pi\)
0.851120 + 0.524972i \(0.175924\pi\)
\(258\) −2.16499e6 −2.02491
\(259\) 72261.8 0.0669359
\(260\) 0 0
\(261\) −306544. −0.278542
\(262\) 418635. 0.376775
\(263\) 796589. 0.710141 0.355071 0.934839i \(-0.384457\pi\)
0.355071 + 0.934839i \(0.384457\pi\)
\(264\) −237789. −0.209982
\(265\) 0 0
\(266\) 128177. 0.111072
\(267\) −1.31971e6 −1.13292
\(268\) 2.59825e6 2.20975
\(269\) −1.58930e6 −1.33913 −0.669567 0.742751i \(-0.733520\pi\)
−0.669567 + 0.742751i \(0.733520\pi\)
\(270\) 0 0
\(271\) 1.77761e6 1.47033 0.735163 0.677890i \(-0.237106\pi\)
0.735163 + 0.677890i \(0.237106\pi\)
\(272\) −119871. −0.0982410
\(273\) 33379.5 0.0271064
\(274\) −3.10864e6 −2.50146
\(275\) 0 0
\(276\) −337024. −0.266311
\(277\) −1.58991e6 −1.24501 −0.622506 0.782615i \(-0.713885\pi\)
−0.622506 + 0.782615i \(0.713885\pi\)
\(278\) −2.35129e6 −1.82471
\(279\) 862562. 0.663407
\(280\) 0 0
\(281\) −542033. −0.409505 −0.204753 0.978814i \(-0.565639\pi\)
−0.204753 + 0.978814i \(0.565639\pi\)
\(282\) −88211.8 −0.0660547
\(283\) −230145. −0.170818 −0.0854092 0.996346i \(-0.527220\pi\)
−0.0854092 + 0.996346i \(0.527220\pi\)
\(284\) 1.79102e6 1.31766
\(285\) 0 0
\(286\) 131358. 0.0949600
\(287\) 120173. 0.0861195
\(288\) −257853. −0.183185
\(289\) −1.39089e6 −0.979596
\(290\) 0 0
\(291\) −321178. −0.222338
\(292\) −5.08677e6 −3.49128
\(293\) 355633. 0.242010 0.121005 0.992652i \(-0.461388\pi\)
0.121005 + 0.992652i \(0.461388\pi\)
\(294\) −1.69783e6 −1.14558
\(295\) 0 0
\(296\) 1.07675e6 0.714310
\(297\) −321380. −0.211411
\(298\) 1.66140e6 1.08376
\(299\) 87776.1 0.0567804
\(300\) 0 0
\(301\) 386977. 0.246189
\(302\) −2.46609e6 −1.55594
\(303\) −1.62041e6 −1.01395
\(304\) 509173. 0.315996
\(305\) 0 0
\(306\) −209811. −0.128093
\(307\) −923225. −0.559064 −0.279532 0.960136i \(-0.590179\pi\)
−0.279532 + 0.960136i \(0.590179\pi\)
\(308\) 90150.9 0.0541494
\(309\) −126213. −0.0751984
\(310\) 0 0
\(311\) 449003. 0.263238 0.131619 0.991300i \(-0.457983\pi\)
0.131619 + 0.991300i \(0.457983\pi\)
\(312\) 497378. 0.289268
\(313\) 2.93310e6 1.69225 0.846127 0.532981i \(-0.178928\pi\)
0.846127 + 0.532981i \(0.178928\pi\)
\(314\) 3.21014e6 1.83738
\(315\) 0 0
\(316\) 2.24410e6 1.26423
\(317\) 1.28699e6 0.719327 0.359663 0.933082i \(-0.382892\pi\)
0.359663 + 0.933082i \(0.382892\pi\)
\(318\) −57091.6 −0.0316595
\(319\) −193293. −0.106350
\(320\) 0 0
\(321\) 1.57357e6 0.852363
\(322\) 92080.0 0.0494910
\(323\) −123060. −0.0656314
\(324\) −695871. −0.368270
\(325\) 0 0
\(326\) 915007. 0.476849
\(327\) −426894. −0.220775
\(328\) 1.79066e6 0.919028
\(329\) 15767.3 0.00803094
\(330\) 0 0
\(331\) −69938.9 −0.0350872 −0.0175436 0.999846i \(-0.505585\pi\)
−0.0175436 + 0.999846i \(0.505585\pi\)
\(332\) −5.72463e6 −2.85038
\(333\) 502433. 0.248295
\(334\) −4.70170e6 −2.30616
\(335\) 0 0
\(336\) 139099. 0.0672164
\(337\) 1.63283e6 0.783187 0.391593 0.920138i \(-0.371924\pi\)
0.391593 + 0.920138i \(0.371924\pi\)
\(338\) −274758. −0.130815
\(339\) 127377. 0.0601995
\(340\) 0 0
\(341\) 543894. 0.253296
\(342\) 891209. 0.412016
\(343\) 613210. 0.281432
\(344\) 5.76623e6 2.62722
\(345\) 0 0
\(346\) −2.11230e6 −0.948560
\(347\) 1.44134e6 0.642605 0.321302 0.946977i \(-0.395879\pi\)
0.321302 + 0.946977i \(0.395879\pi\)
\(348\) −1.55237e6 −0.687142
\(349\) 2.89043e6 1.27028 0.635140 0.772397i \(-0.280942\pi\)
0.635140 + 0.772397i \(0.280942\pi\)
\(350\) 0 0
\(351\) 672221. 0.291236
\(352\) −162591. −0.0699422
\(353\) −803981. −0.343407 −0.171704 0.985149i \(-0.554927\pi\)
−0.171704 + 0.985149i \(0.554927\pi\)
\(354\) −2.67394e6 −1.13408
\(355\) 0 0
\(356\) 7.45527e6 3.11773
\(357\) −33618.3 −0.0139607
\(358\) −2.08843e6 −0.861218
\(359\) 1.93534e6 0.792541 0.396270 0.918134i \(-0.370304\pi\)
0.396270 + 0.918134i \(0.370304\pi\)
\(360\) 0 0
\(361\) −1.95338e6 −0.788894
\(362\) 6.23134e6 2.49925
\(363\) 1.65610e6 0.659659
\(364\) −188566. −0.0745952
\(365\) 0 0
\(366\) −71899.9 −0.0280560
\(367\) −3.46002e6 −1.34095 −0.670476 0.741931i \(-0.733910\pi\)
−0.670476 + 0.741931i \(0.733910\pi\)
\(368\) 365781. 0.140800
\(369\) 835557. 0.319455
\(370\) 0 0
\(371\) 10204.7 0.00384917
\(372\) 4.36810e6 1.63657
\(373\) 3.83742e6 1.42813 0.714064 0.700081i \(-0.246853\pi\)
0.714064 + 0.700081i \(0.246853\pi\)
\(374\) −132298. −0.0489073
\(375\) 0 0
\(376\) 234944. 0.0857026
\(377\) 404306. 0.146506
\(378\) 705182. 0.253847
\(379\) 4.11044e6 1.46991 0.734955 0.678116i \(-0.237203\pi\)
0.734955 + 0.678116i \(0.237203\pi\)
\(380\) 0 0
\(381\) −2.62810e6 −0.927532
\(382\) 6.50185e6 2.27971
\(383\) 3.66515e6 1.27672 0.638358 0.769740i \(-0.279614\pi\)
0.638358 + 0.769740i \(0.279614\pi\)
\(384\) −3.62934e6 −1.25603
\(385\) 0 0
\(386\) −667248. −0.227939
\(387\) 2.69063e6 0.913223
\(388\) 1.81439e6 0.611859
\(389\) −2.07210e6 −0.694282 −0.347141 0.937813i \(-0.612847\pi\)
−0.347141 + 0.937813i \(0.612847\pi\)
\(390\) 0 0
\(391\) −88404.4 −0.0292437
\(392\) 4.52200e6 1.48633
\(393\) 466393. 0.152325
\(394\) −1.03523e7 −3.35968
\(395\) 0 0
\(396\) 626816. 0.200864
\(397\) −5.27270e6 −1.67902 −0.839512 0.543341i \(-0.817159\pi\)
−0.839512 + 0.543341i \(0.817159\pi\)
\(398\) 2.79598e6 0.884763
\(399\) 142800. 0.0449050
\(400\) 0 0
\(401\) −1.49206e6 −0.463367 −0.231683 0.972791i \(-0.574423\pi\)
−0.231683 + 0.972791i \(0.574423\pi\)
\(402\) 4.42458e6 1.36555
\(403\) −1.13765e6 −0.348936
\(404\) 9.15395e6 2.79033
\(405\) 0 0
\(406\) 424130. 0.127698
\(407\) 316812. 0.0948017
\(408\) −500938. −0.148982
\(409\) −1.36588e6 −0.403743 −0.201872 0.979412i \(-0.564702\pi\)
−0.201872 + 0.979412i \(0.564702\pi\)
\(410\) 0 0
\(411\) −3.46327e6 −1.01131
\(412\) 713001. 0.206941
\(413\) 477949. 0.137882
\(414\) 640229. 0.183584
\(415\) 0 0
\(416\) 340087. 0.0963511
\(417\) −2.61952e6 −0.737704
\(418\) 561957. 0.157312
\(419\) 1.06312e6 0.295835 0.147917 0.989000i \(-0.452743\pi\)
0.147917 + 0.989000i \(0.452743\pi\)
\(420\) 0 0
\(421\) 2.10790e6 0.579622 0.289811 0.957084i \(-0.406408\pi\)
0.289811 + 0.957084i \(0.406408\pi\)
\(422\) −13810.3 −0.00377504
\(423\) 109629. 0.0297903
\(424\) 152058. 0.0410766
\(425\) 0 0
\(426\) 3.04994e6 0.814268
\(427\) 12851.6 0.00341105
\(428\) −8.88940e6 −2.34565
\(429\) 146343. 0.0383910
\(430\) 0 0
\(431\) −223504. −0.0579551 −0.0289775 0.999580i \(-0.509225\pi\)
−0.0289775 + 0.999580i \(0.509225\pi\)
\(432\) 2.80128e6 0.722183
\(433\) 836386. 0.214381 0.107191 0.994238i \(-0.465814\pi\)
0.107191 + 0.994238i \(0.465814\pi\)
\(434\) −1.19343e6 −0.304140
\(435\) 0 0
\(436\) 2.41160e6 0.607560
\(437\) 375512. 0.0940633
\(438\) −8.66231e6 −2.15749
\(439\) 2.41540e6 0.598173 0.299087 0.954226i \(-0.403318\pi\)
0.299087 + 0.954226i \(0.403318\pi\)
\(440\) 0 0
\(441\) 2.11005e6 0.516651
\(442\) 276724. 0.0673739
\(443\) 5.13301e6 1.24269 0.621345 0.783537i \(-0.286586\pi\)
0.621345 + 0.783537i \(0.286586\pi\)
\(444\) 2.54437e6 0.612525
\(445\) 0 0
\(446\) 4.01683e6 0.956194
\(447\) 1.85093e6 0.438149
\(448\) 772080. 0.181747
\(449\) −3.64066e6 −0.852244 −0.426122 0.904666i \(-0.640121\pi\)
−0.426122 + 0.904666i \(0.640121\pi\)
\(450\) 0 0
\(451\) 526866. 0.121972
\(452\) −719577. −0.165665
\(453\) −2.74743e6 −0.629043
\(454\) −5.91285e6 −1.34635
\(455\) 0 0
\(456\) 2.12782e6 0.479206
\(457\) −3.99375e6 −0.894521 −0.447260 0.894404i \(-0.647600\pi\)
−0.447260 + 0.894404i \(0.647600\pi\)
\(458\) −1.05722e7 −2.35506
\(459\) −677032. −0.149995
\(460\) 0 0
\(461\) −6.94874e6 −1.52284 −0.761419 0.648260i \(-0.775497\pi\)
−0.761419 + 0.648260i \(0.775497\pi\)
\(462\) 153519. 0.0334624
\(463\) −5.09427e6 −1.10441 −0.552204 0.833709i \(-0.686213\pi\)
−0.552204 + 0.833709i \(0.686213\pi\)
\(464\) 1.68482e6 0.363295
\(465\) 0 0
\(466\) −7.60145e6 −1.62155
\(467\) −6.29319e6 −1.33530 −0.667650 0.744475i \(-0.732700\pi\)
−0.667650 + 0.744475i \(0.732700\pi\)
\(468\) −1.31109e6 −0.276706
\(469\) −790864. −0.166024
\(470\) 0 0
\(471\) 3.57636e6 0.742829
\(472\) 7.12178e6 1.47141
\(473\) 1.69660e6 0.348679
\(474\) 3.82150e6 0.781246
\(475\) 0 0
\(476\) 189916. 0.0384188
\(477\) 70953.1 0.0142783
\(478\) −1.56648e7 −3.13586
\(479\) 2.99562e6 0.596551 0.298276 0.954480i \(-0.403589\pi\)
0.298276 + 0.954480i \(0.403589\pi\)
\(480\) 0 0
\(481\) −662668. −0.130597
\(482\) 2.00967e6 0.394009
\(483\) 102585. 0.0200085
\(484\) −9.35559e6 −1.81534
\(485\) 0 0
\(486\) 8.11340e6 1.55816
\(487\) 7.03713e6 1.34454 0.672269 0.740307i \(-0.265320\pi\)
0.672269 + 0.740307i \(0.265320\pi\)
\(488\) 191498. 0.0364012
\(489\) 1.01939e6 0.192783
\(490\) 0 0
\(491\) −4.68700e6 −0.877388 −0.438694 0.898637i \(-0.644559\pi\)
−0.438694 + 0.898637i \(0.644559\pi\)
\(492\) 4.23135e6 0.788072
\(493\) −407199. −0.0754553
\(494\) −1.17543e6 −0.216711
\(495\) 0 0
\(496\) −4.74081e6 −0.865263
\(497\) −545156. −0.0989988
\(498\) −9.74852e6 −1.76143
\(499\) −7.25902e6 −1.30505 −0.652525 0.757768i \(-0.726290\pi\)
−0.652525 + 0.757768i \(0.726290\pi\)
\(500\) 0 0
\(501\) −5.23808e6 −0.932347
\(502\) −1.45757e7 −2.58148
\(503\) −1.36235e6 −0.240087 −0.120044 0.992769i \(-0.538303\pi\)
−0.120044 + 0.992769i \(0.538303\pi\)
\(504\) −648447. −0.113710
\(505\) 0 0
\(506\) 403700. 0.0700943
\(507\) −306102. −0.0528867
\(508\) 1.48466e7 2.55251
\(509\) 7.22299e6 1.23573 0.617864 0.786285i \(-0.287998\pi\)
0.617864 + 0.786285i \(0.287998\pi\)
\(510\) 0 0
\(511\) 1.54833e6 0.262308
\(512\) 7.60574e6 1.28223
\(513\) 2.87581e6 0.482466
\(514\) −1.73392e7 −2.89482
\(515\) 0 0
\(516\) 1.36256e7 2.25285
\(517\) 69127.3 0.0113743
\(518\) −695161. −0.113831
\(519\) −2.35327e6 −0.383489
\(520\) 0 0
\(521\) −4.66901e6 −0.753582 −0.376791 0.926298i \(-0.622973\pi\)
−0.376791 + 0.926298i \(0.622973\pi\)
\(522\) 2.94896e6 0.473688
\(523\) −1.60688e6 −0.256880 −0.128440 0.991717i \(-0.540997\pi\)
−0.128440 + 0.991717i \(0.540997\pi\)
\(524\) −2.63474e6 −0.419188
\(525\) 0 0
\(526\) −7.66321e6 −1.20766
\(527\) 1.14579e6 0.179713
\(528\) 609841. 0.0951989
\(529\) −6.16658e6 −0.958088
\(530\) 0 0
\(531\) 3.32316e6 0.511464
\(532\) −806700. −0.123576
\(533\) −1.10203e6 −0.168026
\(534\) 1.26956e7 1.92664
\(535\) 0 0
\(536\) −1.17844e7 −1.77173
\(537\) −2.32668e6 −0.348178
\(538\) 1.52891e7 2.27733
\(539\) 1.33051e6 0.197263
\(540\) 0 0
\(541\) 1.09893e7 1.61428 0.807139 0.590362i \(-0.201015\pi\)
0.807139 + 0.590362i \(0.201015\pi\)
\(542\) −1.71007e7 −2.50043
\(543\) 6.94222e6 1.01041
\(544\) −342521. −0.0496238
\(545\) 0 0
\(546\) −321111. −0.0460972
\(547\) 2.28671e6 0.326770 0.163385 0.986562i \(-0.447759\pi\)
0.163385 + 0.986562i \(0.447759\pi\)
\(548\) 1.95646e7 2.78305
\(549\) 89356.8 0.0126531
\(550\) 0 0
\(551\) 1.72965e6 0.242705
\(552\) 1.52858e6 0.213522
\(553\) −683067. −0.0949840
\(554\) 1.52950e7 2.11726
\(555\) 0 0
\(556\) 1.47981e7 2.03011
\(557\) −7.22072e6 −0.986149 −0.493075 0.869987i \(-0.664127\pi\)
−0.493075 + 0.869987i \(0.664127\pi\)
\(558\) −8.29788e6 −1.12819
\(559\) −3.54872e6 −0.480333
\(560\) 0 0
\(561\) −147391. −0.0197725
\(562\) 5.21437e6 0.696404
\(563\) 2.89551e6 0.384994 0.192497 0.981298i \(-0.438341\pi\)
0.192497 + 0.981298i \(0.438341\pi\)
\(564\) 555173. 0.0734904
\(565\) 0 0
\(566\) 2.21400e6 0.290493
\(567\) 211812. 0.0276689
\(568\) −8.12322e6 −1.05647
\(569\) −1.43899e7 −1.86327 −0.931637 0.363391i \(-0.881619\pi\)
−0.931637 + 0.363391i \(0.881619\pi\)
\(570\) 0 0
\(571\) −8.99971e6 −1.15515 −0.577575 0.816338i \(-0.696001\pi\)
−0.577575 + 0.816338i \(0.696001\pi\)
\(572\) −826718. −0.105650
\(573\) 7.24359e6 0.921653
\(574\) −1.15607e6 −0.146455
\(575\) 0 0
\(576\) 5.36824e6 0.674180
\(577\) −1.15215e7 −1.44069 −0.720344 0.693617i \(-0.756016\pi\)
−0.720344 + 0.693617i \(0.756016\pi\)
\(578\) 1.33804e7 1.66590
\(579\) −743368. −0.0921526
\(580\) 0 0
\(581\) 1.74248e6 0.214155
\(582\) 3.08974e6 0.378107
\(583\) 44739.9 0.00545160
\(584\) 2.30712e7 2.79923
\(585\) 0 0
\(586\) −3.42120e6 −0.411561
\(587\) 1.00352e7 1.20207 0.601036 0.799222i \(-0.294755\pi\)
0.601036 + 0.799222i \(0.294755\pi\)
\(588\) 1.06855e7 1.27454
\(589\) −4.86694e6 −0.578053
\(590\) 0 0
\(591\) −1.15333e7 −1.35827
\(592\) −2.76147e6 −0.323844
\(593\) 3.56031e6 0.415768 0.207884 0.978153i \(-0.433342\pi\)
0.207884 + 0.978153i \(0.433342\pi\)
\(594\) 3.09168e6 0.359525
\(595\) 0 0
\(596\) −1.04562e7 −1.20576
\(597\) 3.11495e6 0.357697
\(598\) −844409. −0.0965606
\(599\) 1.00529e7 1.14479 0.572395 0.819978i \(-0.306015\pi\)
0.572395 + 0.819978i \(0.306015\pi\)
\(600\) 0 0
\(601\) −4.56283e6 −0.515286 −0.257643 0.966240i \(-0.582946\pi\)
−0.257643 + 0.966240i \(0.582946\pi\)
\(602\) −3.72273e6 −0.418668
\(603\) −5.49885e6 −0.615855
\(604\) 1.55207e7 1.73109
\(605\) 0 0
\(606\) 1.55883e7 1.72432
\(607\) −8.72137e6 −0.960756 −0.480378 0.877062i \(-0.659500\pi\)
−0.480378 + 0.877062i \(0.659500\pi\)
\(608\) 1.45491e6 0.159617
\(609\) 472515. 0.0516265
\(610\) 0 0
\(611\) −144592. −0.0156690
\(612\) 1.32048e6 0.142512
\(613\) 1.08948e7 1.17103 0.585514 0.810663i \(-0.300893\pi\)
0.585514 + 0.810663i \(0.300893\pi\)
\(614\) 8.88146e6 0.950743
\(615\) 0 0
\(616\) −408882. −0.0434157
\(617\) 857013. 0.0906306 0.0453153 0.998973i \(-0.485571\pi\)
0.0453153 + 0.998973i \(0.485571\pi\)
\(618\) 1.21418e6 0.127882
\(619\) 1.32215e7 1.38693 0.693465 0.720490i \(-0.256083\pi\)
0.693465 + 0.720490i \(0.256083\pi\)
\(620\) 0 0
\(621\) 2.06593e6 0.214974
\(622\) −4.31942e6 −0.447661
\(623\) −2.26926e6 −0.234242
\(624\) −1.27559e6 −0.131144
\(625\) 0 0
\(626\) −2.82165e7 −2.87784
\(627\) 626066. 0.0635991
\(628\) −2.02035e7 −2.04422
\(629\) 667411. 0.0672615
\(630\) 0 0
\(631\) 1.67770e7 1.67742 0.838708 0.544581i \(-0.183311\pi\)
0.838708 + 0.544581i \(0.183311\pi\)
\(632\) −1.01782e7 −1.01363
\(633\) −15385.8 −0.00152620
\(634\) −1.23809e7 −1.22329
\(635\) 0 0
\(636\) 359314. 0.0352234
\(637\) −2.78299e6 −0.271746
\(638\) 1.85948e6 0.180859
\(639\) −3.79045e6 −0.367230
\(640\) 0 0
\(641\) −4.32082e6 −0.415357 −0.207679 0.978197i \(-0.566591\pi\)
−0.207679 + 0.978197i \(0.566591\pi\)
\(642\) −1.51378e7 −1.44953
\(643\) 1.77399e7 1.69209 0.846045 0.533111i \(-0.178977\pi\)
0.846045 + 0.533111i \(0.178977\pi\)
\(644\) −579519. −0.0550621
\(645\) 0 0
\(646\) 1.18384e6 0.111613
\(647\) 1.50885e7 1.41705 0.708525 0.705686i \(-0.249361\pi\)
0.708525 + 0.705686i \(0.249361\pi\)
\(648\) 3.15614e6 0.295270
\(649\) 2.09544e6 0.195282
\(650\) 0 0
\(651\) −1.32958e6 −0.122959
\(652\) −5.75873e6 −0.530527
\(653\) −9.81391e6 −0.900657 −0.450328 0.892863i \(-0.648693\pi\)
−0.450328 + 0.892863i \(0.648693\pi\)
\(654\) 4.10673e6 0.375450
\(655\) 0 0
\(656\) −4.59238e6 −0.416657
\(657\) 1.07655e7 0.973015
\(658\) −151682. −0.0136574
\(659\) −8.40142e6 −0.753597 −0.376798 0.926295i \(-0.622975\pi\)
−0.376798 + 0.926295i \(0.622975\pi\)
\(660\) 0 0
\(661\) 3.18929e6 0.283916 0.141958 0.989873i \(-0.454660\pi\)
0.141958 + 0.989873i \(0.454660\pi\)
\(662\) 672814. 0.0596692
\(663\) 308293. 0.0272383
\(664\) 2.59642e7 2.28536
\(665\) 0 0
\(666\) −4.83342e6 −0.422250
\(667\) 1.24255e6 0.108143
\(668\) 2.95908e7 2.56576
\(669\) 4.47507e6 0.386576
\(670\) 0 0
\(671\) 56344.5 0.00483109
\(672\) 397462. 0.0339526
\(673\) −1.51187e7 −1.28669 −0.643347 0.765575i \(-0.722455\pi\)
−0.643347 + 0.765575i \(0.722455\pi\)
\(674\) −1.57078e7 −1.33189
\(675\) 0 0
\(676\) 1.72923e6 0.145541
\(677\) −7.55195e6 −0.633268 −0.316634 0.948548i \(-0.602553\pi\)
−0.316634 + 0.948548i \(0.602553\pi\)
\(678\) −1.22537e6 −0.102375
\(679\) −552270. −0.0459703
\(680\) 0 0
\(681\) −6.58740e6 −0.544310
\(682\) −5.23228e6 −0.430754
\(683\) −2.23148e7 −1.83038 −0.915191 0.403021i \(-0.867960\pi\)
−0.915191 + 0.403021i \(0.867960\pi\)
\(684\) −5.60895e6 −0.458396
\(685\) 0 0
\(686\) −5.89910e6 −0.478603
\(687\) −1.17783e7 −0.952117
\(688\) −1.47882e7 −1.19109
\(689\) −93581.3 −0.00751002
\(690\) 0 0
\(691\) 1.32161e7 1.05295 0.526474 0.850191i \(-0.323514\pi\)
0.526474 + 0.850191i \(0.323514\pi\)
\(692\) 1.32940e7 1.05534
\(693\) −190792. −0.0150913
\(694\) −1.38658e7 −1.09281
\(695\) 0 0
\(696\) 7.04082e6 0.550934
\(697\) 1.10992e6 0.0865384
\(698\) −2.78061e7 −2.16023
\(699\) −8.46863e6 −0.655572
\(700\) 0 0
\(701\) −9.22726e6 −0.709215 −0.354607 0.935015i \(-0.615385\pi\)
−0.354607 + 0.935015i \(0.615385\pi\)
\(702\) −6.46679e6 −0.495274
\(703\) −2.83494e6 −0.216349
\(704\) 3.38498e6 0.257409
\(705\) 0 0
\(706\) 7.73433e6 0.583997
\(707\) −2.78631e6 −0.209643
\(708\) 1.68288e7 1.26174
\(709\) 1.54395e7 1.15350 0.576751 0.816920i \(-0.304320\pi\)
0.576751 + 0.816920i \(0.304320\pi\)
\(710\) 0 0
\(711\) −4.74934e6 −0.352338
\(712\) −3.38136e7 −2.49972
\(713\) −3.49632e6 −0.257565
\(714\) 323410. 0.0237415
\(715\) 0 0
\(716\) 1.31438e7 0.958164
\(717\) −1.74519e7 −1.26778
\(718\) −1.86180e7 −1.34779
\(719\) −6.33241e6 −0.456822 −0.228411 0.973565i \(-0.573353\pi\)
−0.228411 + 0.973565i \(0.573353\pi\)
\(720\) 0 0
\(721\) −217026. −0.0155479
\(722\) 1.87916e7 1.34159
\(723\) 2.23893e6 0.159292
\(724\) −3.92178e7 −2.78059
\(725\) 0 0
\(726\) −1.59317e7 −1.12181
\(727\) −1.26906e6 −0.0890522 −0.0445261 0.999008i \(-0.514178\pi\)
−0.0445261 + 0.999008i \(0.514178\pi\)
\(728\) 855249. 0.0598087
\(729\) 1.18319e7 0.824585
\(730\) 0 0
\(731\) 3.57412e6 0.247386
\(732\) 452512. 0.0312142
\(733\) −3.39046e6 −0.233077 −0.116538 0.993186i \(-0.537180\pi\)
−0.116538 + 0.993186i \(0.537180\pi\)
\(734\) 3.32855e7 2.28042
\(735\) 0 0
\(736\) 1.04518e6 0.0711211
\(737\) −3.46733e6 −0.235140
\(738\) −8.03808e6 −0.543265
\(739\) −1.16232e7 −0.782917 −0.391458 0.920196i \(-0.628029\pi\)
−0.391458 + 0.920196i \(0.628029\pi\)
\(740\) 0 0
\(741\) −1.30953e6 −0.0876130
\(742\) −98169.9 −0.00654589
\(743\) −1.56391e7 −1.03929 −0.519647 0.854381i \(-0.673937\pi\)
−0.519647 + 0.854381i \(0.673937\pi\)
\(744\) −1.98117e7 −1.31217
\(745\) 0 0
\(746\) −3.69161e7 −2.42867
\(747\) 1.21154e7 0.794395
\(748\) 832635. 0.0544128
\(749\) 2.70579e6 0.176234
\(750\) 0 0
\(751\) 2.41507e7 1.56253 0.781267 0.624196i \(-0.214574\pi\)
0.781267 + 0.624196i \(0.214574\pi\)
\(752\) −602543. −0.0388547
\(753\) −1.62385e7 −1.04366
\(754\) −3.88944e6 −0.249148
\(755\) 0 0
\(756\) −4.43816e6 −0.282422
\(757\) 1.27880e7 0.811078 0.405539 0.914078i \(-0.367084\pi\)
0.405539 + 0.914078i \(0.367084\pi\)
\(758\) −3.95426e7 −2.49972
\(759\) 449755. 0.0283381
\(760\) 0 0
\(761\) 2.35049e7 1.47129 0.735644 0.677369i \(-0.236880\pi\)
0.735644 + 0.677369i \(0.236880\pi\)
\(762\) 2.52824e7 1.57736
\(763\) −734051. −0.0456473
\(764\) −4.09203e7 −2.53633
\(765\) 0 0
\(766\) −3.52588e7 −2.17118
\(767\) −4.38298e6 −0.269018
\(768\) 2.05460e7 1.25697
\(769\) 1.61889e7 0.987190 0.493595 0.869692i \(-0.335683\pi\)
0.493595 + 0.869692i \(0.335683\pi\)
\(770\) 0 0
\(771\) −1.93173e7 −1.17034
\(772\) 4.19942e6 0.253598
\(773\) 1.34926e7 0.812172 0.406086 0.913835i \(-0.366893\pi\)
0.406086 + 0.913835i \(0.366893\pi\)
\(774\) −2.58840e7 −1.55303
\(775\) 0 0
\(776\) −8.22922e6 −0.490574
\(777\) −774465. −0.0460203
\(778\) 1.99336e7 1.18069
\(779\) −4.71456e6 −0.278354
\(780\) 0 0
\(781\) −2.39009e6 −0.140212
\(782\) 850453. 0.0497317
\(783\) 9.51588e6 0.554683
\(784\) −1.15973e7 −0.673853
\(785\) 0 0
\(786\) −4.48672e6 −0.259043
\(787\) 2.77228e7 1.59551 0.797757 0.602979i \(-0.206020\pi\)
0.797757 + 0.602979i \(0.206020\pi\)
\(788\) 6.51539e7 3.73787
\(789\) −8.53743e6 −0.488242
\(790\) 0 0
\(791\) 219027. 0.0124468
\(792\) −2.84294e6 −0.161048
\(793\) −117854. −0.00665522
\(794\) 5.07236e7 2.85534
\(795\) 0 0
\(796\) −1.75969e7 −0.984360
\(797\) 1.70875e7 0.952870 0.476435 0.879210i \(-0.341929\pi\)
0.476435 + 0.879210i \(0.341929\pi\)
\(798\) −1.37374e6 −0.0763653
\(799\) 145627. 0.00807001
\(800\) 0 0
\(801\) −1.57781e7 −0.868906
\(802\) 1.43537e7 0.788001
\(803\) 6.78823e6 0.371508
\(804\) −2.78467e7 −1.51927
\(805\) 0 0
\(806\) 1.09442e7 0.593399
\(807\) 1.70333e7 0.920692
\(808\) −4.15180e7 −2.23722
\(809\) 3.28199e7 1.76305 0.881527 0.472133i \(-0.156516\pi\)
0.881527 + 0.472133i \(0.156516\pi\)
\(810\) 0 0
\(811\) −3.04825e6 −0.162742 −0.0813708 0.996684i \(-0.525930\pi\)
−0.0813708 + 0.996684i \(0.525930\pi\)
\(812\) −2.66932e6 −0.142073
\(813\) −1.90515e7 −1.01089
\(814\) −3.04775e6 −0.161220
\(815\) 0 0
\(816\) 1.28472e6 0.0675434
\(817\) −1.51817e7 −0.795728
\(818\) 1.31398e7 0.686605
\(819\) 399075. 0.0207896
\(820\) 0 0
\(821\) 4.88552e6 0.252961 0.126480 0.991969i \(-0.459632\pi\)
0.126480 + 0.991969i \(0.459632\pi\)
\(822\) 3.33168e7 1.71982
\(823\) −7.45432e6 −0.383626 −0.191813 0.981431i \(-0.561437\pi\)
−0.191813 + 0.981431i \(0.561437\pi\)
\(824\) −3.23384e6 −0.165921
\(825\) 0 0
\(826\) −4.59789e6 −0.234481
\(827\) 1.47591e7 0.750405 0.375202 0.926943i \(-0.377573\pi\)
0.375202 + 0.926943i \(0.377573\pi\)
\(828\) −4.02937e6 −0.204250
\(829\) 6.19808e6 0.313236 0.156618 0.987659i \(-0.449941\pi\)
0.156618 + 0.987659i \(0.449941\pi\)
\(830\) 0 0
\(831\) 1.70399e7 0.855980
\(832\) −7.08027e6 −0.354602
\(833\) 2.80290e6 0.139957
\(834\) 2.51999e7 1.25454
\(835\) 0 0
\(836\) −3.53676e6 −0.175021
\(837\) −2.67761e7 −1.32109
\(838\) −1.02273e7 −0.503096
\(839\) 2.44941e7 1.20131 0.600657 0.799507i \(-0.294906\pi\)
0.600657 + 0.799507i \(0.294906\pi\)
\(840\) 0 0
\(841\) −1.47878e7 −0.720966
\(842\) −2.02781e7 −0.985703
\(843\) 5.80923e6 0.281546
\(844\) 86917.0 0.00419999
\(845\) 0 0
\(846\) −1.05464e6 −0.0506613
\(847\) 2.84769e6 0.136390
\(848\) −389972. −0.0186228
\(849\) 2.46657e6 0.117442
\(850\) 0 0
\(851\) −2.03657e6 −0.0963996
\(852\) −1.91952e7 −0.905929
\(853\) −4.89553e6 −0.230371 −0.115185 0.993344i \(-0.536746\pi\)
−0.115185 + 0.993344i \(0.536746\pi\)
\(854\) −123633. −0.00580082
\(855\) 0 0
\(856\) 4.03181e7 1.88069
\(857\) −2.35363e7 −1.09468 −0.547338 0.836912i \(-0.684359\pi\)
−0.547338 + 0.836912i \(0.684359\pi\)
\(858\) −1.40783e6 −0.0652876
\(859\) 3.00121e7 1.38776 0.693878 0.720093i \(-0.255901\pi\)
0.693878 + 0.720093i \(0.255901\pi\)
\(860\) 0 0
\(861\) −1.28795e6 −0.0592095
\(862\) 2.15011e6 0.0985582
\(863\) 2.04116e6 0.0932932 0.0466466 0.998911i \(-0.485147\pi\)
0.0466466 + 0.998911i \(0.485147\pi\)
\(864\) 8.00440e6 0.364791
\(865\) 0 0
\(866\) −8.04606e6 −0.364576
\(867\) 1.49068e7 0.673499
\(868\) 7.51102e6 0.338376
\(869\) −2.99472e6 −0.134526
\(870\) 0 0
\(871\) 7.25253e6 0.323925
\(872\) −1.09379e7 −0.487127
\(873\) −3.83991e6 −0.170524
\(874\) −3.61244e6 −0.159964
\(875\) 0 0
\(876\) 5.45174e7 2.40035
\(877\) 1.16699e7 0.512352 0.256176 0.966630i \(-0.417537\pi\)
0.256176 + 0.966630i \(0.417537\pi\)
\(878\) −2.32362e7 −1.01725
\(879\) −3.81149e6 −0.166388
\(880\) 0 0
\(881\) 1.23442e7 0.535826 0.267913 0.963443i \(-0.413666\pi\)
0.267913 + 0.963443i \(0.413666\pi\)
\(882\) −2.02988e7 −0.878614
\(883\) 1.15726e7 0.499492 0.249746 0.968311i \(-0.419653\pi\)
0.249746 + 0.968311i \(0.419653\pi\)
\(884\) −1.74160e6 −0.0749580
\(885\) 0 0
\(886\) −4.93797e7 −2.11332
\(887\) 2.94130e7 1.25525 0.627625 0.778516i \(-0.284027\pi\)
0.627625 + 0.778516i \(0.284027\pi\)
\(888\) −1.15401e7 −0.491108
\(889\) −4.51905e6 −0.191775
\(890\) 0 0
\(891\) 928630. 0.0391876
\(892\) −2.52805e7 −1.06383
\(893\) −618573. −0.0259575
\(894\) −1.78060e7 −0.745115
\(895\) 0 0
\(896\) −6.24070e6 −0.259695
\(897\) −940740. −0.0390381
\(898\) 3.50232e7 1.44932
\(899\) −1.61044e7 −0.664578
\(900\) 0 0
\(901\) 94251.1 0.00386789
\(902\) −5.06846e6 −0.207424
\(903\) −4.14742e6 −0.169262
\(904\) 3.26366e6 0.132826
\(905\) 0 0
\(906\) 2.64303e7 1.06975
\(907\) −1.15733e7 −0.467130 −0.233565 0.972341i \(-0.575039\pi\)
−0.233565 + 0.972341i \(0.575039\pi\)
\(908\) 3.72133e7 1.49790
\(909\) −1.93731e7 −0.777660
\(910\) 0 0
\(911\) 2.25526e7 0.900328 0.450164 0.892946i \(-0.351366\pi\)
0.450164 + 0.892946i \(0.351366\pi\)
\(912\) −5.45706e6 −0.217256
\(913\) 7.63944e6 0.303309
\(914\) 3.84200e7 1.52122
\(915\) 0 0
\(916\) 6.65376e7 2.62016
\(917\) 801971. 0.0314945
\(918\) 6.51307e6 0.255082
\(919\) −3.93029e7 −1.53510 −0.767548 0.640991i \(-0.778524\pi\)
−0.767548 + 0.640991i \(0.778524\pi\)
\(920\) 0 0
\(921\) 9.89466e6 0.384372
\(922\) 6.68471e7 2.58973
\(923\) 4.99929e6 0.193154
\(924\) −966192. −0.0372292
\(925\) 0 0
\(926\) 4.90071e7 1.87815
\(927\) −1.50897e6 −0.0576742
\(928\) 4.81423e6 0.183509
\(929\) −8.90117e6 −0.338383 −0.169191 0.985583i \(-0.554116\pi\)
−0.169191 + 0.985583i \(0.554116\pi\)
\(930\) 0 0
\(931\) −1.19058e7 −0.450178
\(932\) 4.78408e7 1.80409
\(933\) −4.81218e6 −0.180983
\(934\) 6.05407e7 2.27081
\(935\) 0 0
\(936\) 5.94651e6 0.221857
\(937\) 9.66249e6 0.359534 0.179767 0.983709i \(-0.442466\pi\)
0.179767 + 0.983709i \(0.442466\pi\)
\(938\) 7.60814e6 0.282339
\(939\) −3.14355e7 −1.16347
\(940\) 0 0
\(941\) 3.06781e7 1.12942 0.564709 0.825290i \(-0.308988\pi\)
0.564709 + 0.825290i \(0.308988\pi\)
\(942\) −3.44047e7 −1.26325
\(943\) −3.38686e6 −0.124027
\(944\) −1.82647e7 −0.667088
\(945\) 0 0
\(946\) −1.63213e7 −0.592962
\(947\) 9.20730e6 0.333624 0.166812 0.985989i \(-0.446653\pi\)
0.166812 + 0.985989i \(0.446653\pi\)
\(948\) −2.40511e7 −0.869190
\(949\) −1.41988e7 −0.511782
\(950\) 0 0
\(951\) −1.37933e7 −0.494557
\(952\) −861370. −0.0308033
\(953\) 8.44885e6 0.301346 0.150673 0.988584i \(-0.451856\pi\)
0.150673 + 0.988584i \(0.451856\pi\)
\(954\) −682571. −0.0242816
\(955\) 0 0
\(956\) 9.85888e7 3.48886
\(957\) 2.07162e6 0.0731189
\(958\) −2.88179e7 −1.01449
\(959\) −5.95515e6 −0.209096
\(960\) 0 0
\(961\) 1.66860e7 0.582831
\(962\) 6.37489e6 0.222093
\(963\) 1.88132e7 0.653728
\(964\) −1.26481e7 −0.438362
\(965\) 0 0
\(966\) −986867. −0.0340264
\(967\) 7.96585e6 0.273947 0.136973 0.990575i \(-0.456263\pi\)
0.136973 + 0.990575i \(0.456263\pi\)
\(968\) 4.24326e7 1.45550
\(969\) 1.31890e6 0.0451234
\(970\) 0 0
\(971\) −1.54790e7 −0.526858 −0.263429 0.964679i \(-0.584853\pi\)
−0.263429 + 0.964679i \(0.584853\pi\)
\(972\) −5.10628e7 −1.73356
\(973\) −4.50431e6 −0.152527
\(974\) −6.76974e7 −2.28652
\(975\) 0 0
\(976\) −491122. −0.0165031
\(977\) 4.35353e7 1.45917 0.729584 0.683891i \(-0.239714\pi\)
0.729584 + 0.683891i \(0.239714\pi\)
\(978\) −9.80658e6 −0.327847
\(979\) −9.94896e6 −0.331758
\(980\) 0 0
\(981\) −5.10383e6 −0.169326
\(982\) 4.50891e7 1.49208
\(983\) −1.41883e7 −0.468323 −0.234161 0.972198i \(-0.575234\pi\)
−0.234161 + 0.972198i \(0.575234\pi\)
\(984\) −1.91914e7 −0.631857
\(985\) 0 0
\(986\) 3.91727e6 0.128319
\(987\) −168986. −0.00552149
\(988\) 7.39774e6 0.241105
\(989\) −1.09062e7 −0.354556
\(990\) 0 0
\(991\) 1.43414e7 0.463881 0.231940 0.972730i \(-0.425493\pi\)
0.231940 + 0.972730i \(0.425493\pi\)
\(992\) −1.35464e7 −0.437065
\(993\) 749570. 0.0241234
\(994\) 5.24442e6 0.168357
\(995\) 0 0
\(996\) 6.13537e7 1.95971
\(997\) 129946. 0.00414024 0.00207012 0.999998i \(-0.499341\pi\)
0.00207012 + 0.999998i \(0.499341\pi\)
\(998\) 6.98320e7 2.21936
\(999\) −1.55968e7 −0.494449
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.f.1.1 6
5.2 odd 4 325.6.b.f.274.2 12
5.3 odd 4 325.6.b.f.274.11 12
5.4 even 2 65.6.a.e.1.6 6
15.14 odd 2 585.6.a.k.1.1 6
20.19 odd 2 1040.6.a.r.1.3 6
65.64 even 2 845.6.a.g.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.e.1.6 6 5.4 even 2
325.6.a.f.1.1 6 1.1 even 1 trivial
325.6.b.f.274.2 12 5.2 odd 4
325.6.b.f.274.11 12 5.3 odd 4
585.6.a.k.1.1 6 15.14 odd 2
845.6.a.g.1.1 6 65.64 even 2
1040.6.a.r.1.3 6 20.19 odd 2