Properties

Label 325.6.a.f.1.3
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.15349\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.15349 q^{2} -29.2293 q^{3} -14.7485 q^{4} +121.404 q^{6} -42.5171 q^{7} +194.170 q^{8} +611.349 q^{9} +434.431 q^{11} +431.087 q^{12} +169.000 q^{13} +176.594 q^{14} -334.530 q^{16} +424.475 q^{17} -2539.24 q^{18} -2203.44 q^{19} +1242.74 q^{21} -1804.41 q^{22} +1176.65 q^{23} -5675.43 q^{24} -701.940 q^{26} -10766.6 q^{27} +627.063 q^{28} -3074.40 q^{29} +6242.41 q^{31} -4823.96 q^{32} -12698.1 q^{33} -1763.05 q^{34} -9016.48 q^{36} +10102.1 q^{37} +9151.97 q^{38} -4939.74 q^{39} -7026.52 q^{41} -5161.73 q^{42} +21517.8 q^{43} -6407.20 q^{44} -4887.22 q^{46} -3086.13 q^{47} +9778.08 q^{48} -14999.3 q^{49} -12407.1 q^{51} -2492.49 q^{52} -38178.9 q^{53} +44718.9 q^{54} -8255.53 q^{56} +64404.9 q^{57} +12769.5 q^{58} -17513.0 q^{59} -12844.5 q^{61} -25927.8 q^{62} -25992.8 q^{63} +30741.2 q^{64} +52741.5 q^{66} +46496.3 q^{67} -6260.37 q^{68} -34392.7 q^{69} +55843.2 q^{71} +118705. q^{72} -49566.9 q^{73} -41958.9 q^{74} +32497.4 q^{76} -18470.8 q^{77} +20517.2 q^{78} +8611.37 q^{79} +166141. q^{81} +29184.6 q^{82} +1635.95 q^{83} -18328.6 q^{84} -89374.2 q^{86} +89862.3 q^{87} +84353.3 q^{88} +26554.2 q^{89} -7185.39 q^{91} -17353.9 q^{92} -182461. q^{93} +12818.2 q^{94} +141001. q^{96} -181767. q^{97} +62299.5 q^{98} +265589. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - 20 q^{3} + 134 q^{4} - 52 q^{6} - 172 q^{7} + 138 q^{8} + 1034 q^{9} + 800 q^{11} + 832 q^{12} + 1014 q^{13} + 2108 q^{14} + 322 q^{16} - 4396 q^{17} - 6142 q^{18} + 5304 q^{19} + 1072 q^{21}+ \cdots + 301264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.15349 −0.734241 −0.367120 0.930173i \(-0.619656\pi\)
−0.367120 + 0.930173i \(0.619656\pi\)
\(3\) −29.2293 −1.87506 −0.937529 0.347908i \(-0.886892\pi\)
−0.937529 + 0.347908i \(0.886892\pi\)
\(4\) −14.7485 −0.460890
\(5\) 0 0
\(6\) 121.404 1.37674
\(7\) −42.5171 −0.327958 −0.163979 0.986464i \(-0.552433\pi\)
−0.163979 + 0.986464i \(0.552433\pi\)
\(8\) 194.170 1.07265
\(9\) 611.349 2.51584
\(10\) 0 0
\(11\) 434.431 1.08253 0.541264 0.840853i \(-0.317946\pi\)
0.541264 + 0.840853i \(0.317946\pi\)
\(12\) 431.087 0.864196
\(13\) 169.000 0.277350
\(14\) 176.594 0.240800
\(15\) 0 0
\(16\) −334.530 −0.326690
\(17\) 424.475 0.356229 0.178115 0.984010i \(-0.443000\pi\)
0.178115 + 0.984010i \(0.443000\pi\)
\(18\) −2539.24 −1.84723
\(19\) −2203.44 −1.40029 −0.700143 0.714003i \(-0.746880\pi\)
−0.700143 + 0.714003i \(0.746880\pi\)
\(20\) 0 0
\(21\) 1242.74 0.614940
\(22\) −1804.41 −0.794837
\(23\) 1176.65 0.463798 0.231899 0.972740i \(-0.425506\pi\)
0.231899 + 0.972740i \(0.425506\pi\)
\(24\) −5675.43 −2.01127
\(25\) 0 0
\(26\) −701.940 −0.203642
\(27\) −10766.6 −2.84229
\(28\) 627.063 0.151153
\(29\) −3074.40 −0.678836 −0.339418 0.940636i \(-0.610230\pi\)
−0.339418 + 0.940636i \(0.610230\pi\)
\(30\) 0 0
\(31\) 6242.41 1.16667 0.583335 0.812231i \(-0.301747\pi\)
0.583335 + 0.812231i \(0.301747\pi\)
\(32\) −4823.96 −0.832776
\(33\) −12698.1 −2.02980
\(34\) −1763.05 −0.261558
\(35\) 0 0
\(36\) −9016.48 −1.15953
\(37\) 10102.1 1.21313 0.606563 0.795035i \(-0.292548\pi\)
0.606563 + 0.795035i \(0.292548\pi\)
\(38\) 9151.97 1.02815
\(39\) −4939.74 −0.520047
\(40\) 0 0
\(41\) −7026.52 −0.652801 −0.326400 0.945232i \(-0.605836\pi\)
−0.326400 + 0.945232i \(0.605836\pi\)
\(42\) −5161.73 −0.451514
\(43\) 21517.8 1.77471 0.887355 0.461086i \(-0.152540\pi\)
0.887355 + 0.461086i \(0.152540\pi\)
\(44\) −6407.20 −0.498927
\(45\) 0 0
\(46\) −4887.22 −0.340539
\(47\) −3086.13 −0.203784 −0.101892 0.994795i \(-0.532490\pi\)
−0.101892 + 0.994795i \(0.532490\pi\)
\(48\) 9778.08 0.612562
\(49\) −14999.3 −0.892443
\(50\) 0 0
\(51\) −12407.1 −0.667951
\(52\) −2492.49 −0.127828
\(53\) −38178.9 −1.86695 −0.933477 0.358638i \(-0.883241\pi\)
−0.933477 + 0.358638i \(0.883241\pi\)
\(54\) 44718.9 2.08693
\(55\) 0 0
\(56\) −8255.53 −0.351783
\(57\) 64404.9 2.62562
\(58\) 12769.5 0.498429
\(59\) −17513.0 −0.654984 −0.327492 0.944854i \(-0.606203\pi\)
−0.327492 + 0.944854i \(0.606203\pi\)
\(60\) 0 0
\(61\) −12844.5 −0.441969 −0.220984 0.975277i \(-0.570927\pi\)
−0.220984 + 0.975277i \(0.570927\pi\)
\(62\) −25927.8 −0.856617
\(63\) −25992.8 −0.825091
\(64\) 30741.2 0.938148
\(65\) 0 0
\(66\) 52741.5 1.49036
\(67\) 46496.3 1.26541 0.632705 0.774393i \(-0.281945\pi\)
0.632705 + 0.774393i \(0.281945\pi\)
\(68\) −6260.37 −0.164183
\(69\) −34392.7 −0.869648
\(70\) 0 0
\(71\) 55843.2 1.31469 0.657346 0.753589i \(-0.271679\pi\)
0.657346 + 0.753589i \(0.271679\pi\)
\(72\) 118705. 2.69861
\(73\) −49566.9 −1.08864 −0.544320 0.838878i \(-0.683212\pi\)
−0.544320 + 0.838878i \(0.683212\pi\)
\(74\) −41958.9 −0.890727
\(75\) 0 0
\(76\) 32497.4 0.645378
\(77\) −18470.8 −0.355024
\(78\) 20517.2 0.381840
\(79\) 8611.37 0.155240 0.0776202 0.996983i \(-0.475268\pi\)
0.0776202 + 0.996983i \(0.475268\pi\)
\(80\) 0 0
\(81\) 166141. 2.81362
\(82\) 29184.6 0.479313
\(83\) 1635.95 0.0260660 0.0130330 0.999915i \(-0.495851\pi\)
0.0130330 + 0.999915i \(0.495851\pi\)
\(84\) −18328.6 −0.283420
\(85\) 0 0
\(86\) −89374.2 −1.30307
\(87\) 89862.3 1.27286
\(88\) 84353.3 1.16117
\(89\) 26554.2 0.355351 0.177676 0.984089i \(-0.443142\pi\)
0.177676 + 0.984089i \(0.443142\pi\)
\(90\) 0 0
\(91\) −7185.39 −0.0909592
\(92\) −17353.9 −0.213760
\(93\) −182461. −2.18757
\(94\) 12818.2 0.149627
\(95\) 0 0
\(96\) 141001. 1.56150
\(97\) −181767. −1.96149 −0.980745 0.195292i \(-0.937435\pi\)
−0.980745 + 0.195292i \(0.937435\pi\)
\(98\) 62299.5 0.655268
\(99\) 265589. 2.72347
\(100\) 0 0
\(101\) 30120.5 0.293805 0.146902 0.989151i \(-0.453070\pi\)
0.146902 + 0.989151i \(0.453070\pi\)
\(102\) 51532.8 0.490437
\(103\) 16097.4 0.149507 0.0747535 0.997202i \(-0.476183\pi\)
0.0747535 + 0.997202i \(0.476183\pi\)
\(104\) 32814.7 0.297498
\(105\) 0 0
\(106\) 158576. 1.37079
\(107\) 215209. 1.81719 0.908597 0.417674i \(-0.137155\pi\)
0.908597 + 0.417674i \(0.137155\pi\)
\(108\) 158791. 1.30998
\(109\) 122039. 0.983856 0.491928 0.870636i \(-0.336292\pi\)
0.491928 + 0.870636i \(0.336292\pi\)
\(110\) 0 0
\(111\) −295276. −2.27468
\(112\) 14223.3 0.107141
\(113\) −127320. −0.937993 −0.468997 0.883200i \(-0.655384\pi\)
−0.468997 + 0.883200i \(0.655384\pi\)
\(114\) −267505. −1.92784
\(115\) 0 0
\(116\) 45342.7 0.312869
\(117\) 103318. 0.697769
\(118\) 72740.2 0.480916
\(119\) −18047.4 −0.116828
\(120\) 0 0
\(121\) 27679.5 0.171868
\(122\) 53349.4 0.324511
\(123\) 205380. 1.22404
\(124\) −92066.2 −0.537707
\(125\) 0 0
\(126\) 107961. 0.605815
\(127\) −327564. −1.80213 −0.901067 0.433680i \(-0.857215\pi\)
−0.901067 + 0.433680i \(0.857215\pi\)
\(128\) 26683.0 0.143949
\(129\) −628951. −3.32769
\(130\) 0 0
\(131\) 86617.2 0.440987 0.220494 0.975388i \(-0.429233\pi\)
0.220494 + 0.975388i \(0.429233\pi\)
\(132\) 187278. 0.935517
\(133\) 93683.8 0.459235
\(134\) −193122. −0.929116
\(135\) 0 0
\(136\) 82420.1 0.382108
\(137\) −223125. −1.01565 −0.507827 0.861459i \(-0.669551\pi\)
−0.507827 + 0.861459i \(0.669551\pi\)
\(138\) 142850. 0.638531
\(139\) −268128. −1.17708 −0.588539 0.808469i \(-0.700297\pi\)
−0.588539 + 0.808469i \(0.700297\pi\)
\(140\) 0 0
\(141\) 90205.4 0.382107
\(142\) −231944. −0.965301
\(143\) 73418.9 0.300239
\(144\) −204515. −0.821900
\(145\) 0 0
\(146\) 205876. 0.799324
\(147\) 438418. 1.67338
\(148\) −148990. −0.559118
\(149\) −22314.5 −0.0823420 −0.0411710 0.999152i \(-0.513109\pi\)
−0.0411710 + 0.999152i \(0.513109\pi\)
\(150\) 0 0
\(151\) 438136. 1.56375 0.781874 0.623437i \(-0.214264\pi\)
0.781874 + 0.623437i \(0.214264\pi\)
\(152\) −427841. −1.50201
\(153\) 259503. 0.896217
\(154\) 76718.2 0.260673
\(155\) 0 0
\(156\) 72853.8 0.239685
\(157\) 452703. 1.46577 0.732883 0.680355i \(-0.238174\pi\)
0.732883 + 0.680355i \(0.238174\pi\)
\(158\) −35767.3 −0.113984
\(159\) 1.11594e6 3.50065
\(160\) 0 0
\(161\) −50027.9 −0.152106
\(162\) −690066. −2.06587
\(163\) −367437. −1.08321 −0.541606 0.840632i \(-0.682183\pi\)
−0.541606 + 0.840632i \(0.682183\pi\)
\(164\) 103631. 0.300869
\(165\) 0 0
\(166\) −6794.91 −0.0191388
\(167\) −29002.0 −0.0804706 −0.0402353 0.999190i \(-0.512811\pi\)
−0.0402353 + 0.999190i \(0.512811\pi\)
\(168\) 241303. 0.659613
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −1.34707e6 −3.52290
\(172\) −317356. −0.817947
\(173\) 105419. 0.267797 0.133898 0.990995i \(-0.457250\pi\)
0.133898 + 0.990995i \(0.457250\pi\)
\(174\) −373243. −0.934584
\(175\) 0 0
\(176\) −145330. −0.353651
\(177\) 511892. 1.22813
\(178\) −110293. −0.260913
\(179\) −299749. −0.699237 −0.349619 0.936892i \(-0.613689\pi\)
−0.349619 + 0.936892i \(0.613689\pi\)
\(180\) 0 0
\(181\) 490770. 1.11348 0.556739 0.830688i \(-0.312052\pi\)
0.556739 + 0.830688i \(0.312052\pi\)
\(182\) 29844.5 0.0667860
\(183\) 375434. 0.828717
\(184\) 228470. 0.497491
\(185\) 0 0
\(186\) 757851. 1.60621
\(187\) 184405. 0.385629
\(188\) 45515.8 0.0939221
\(189\) 457764. 0.932152
\(190\) 0 0
\(191\) −691134. −1.37082 −0.685408 0.728160i \(-0.740376\pi\)
−0.685408 + 0.728160i \(0.740376\pi\)
\(192\) −898544. −1.75908
\(193\) −166093. −0.320966 −0.160483 0.987039i \(-0.551305\pi\)
−0.160483 + 0.987039i \(0.551305\pi\)
\(194\) 754969. 1.44021
\(195\) 0 0
\(196\) 221217. 0.411318
\(197\) 656522. 1.20527 0.602634 0.798018i \(-0.294118\pi\)
0.602634 + 0.798018i \(0.294118\pi\)
\(198\) −1.10312e6 −1.99968
\(199\) 793002. 1.41952 0.709760 0.704443i \(-0.248803\pi\)
0.709760 + 0.704443i \(0.248803\pi\)
\(200\) 0 0
\(201\) −1.35905e6 −2.37272
\(202\) −125105. −0.215723
\(203\) 130714. 0.222630
\(204\) 182986. 0.307852
\(205\) 0 0
\(206\) −66860.3 −0.109774
\(207\) 719346. 1.16684
\(208\) −56535.6 −0.0906075
\(209\) −957242. −1.51585
\(210\) 0 0
\(211\) 728395. 1.12632 0.563159 0.826349i \(-0.309586\pi\)
0.563159 + 0.826349i \(0.309586\pi\)
\(212\) 563081. 0.860461
\(213\) −1.63225e6 −2.46512
\(214\) −893870. −1.33426
\(215\) 0 0
\(216\) −2.09054e6 −3.04877
\(217\) −265409. −0.382619
\(218\) −506887. −0.722387
\(219\) 1.44880e6 2.04126
\(220\) 0 0
\(221\) 71736.3 0.0988003
\(222\) 1.22643e6 1.67016
\(223\) −133554. −0.179844 −0.0899221 0.995949i \(-0.528662\pi\)
−0.0899221 + 0.995949i \(0.528662\pi\)
\(224\) 205101. 0.273116
\(225\) 0 0
\(226\) 528822. 0.688713
\(227\) −1.14153e6 −1.47035 −0.735176 0.677876i \(-0.762901\pi\)
−0.735176 + 0.677876i \(0.762901\pi\)
\(228\) −949874. −1.21012
\(229\) −765463. −0.964573 −0.482287 0.876013i \(-0.660194\pi\)
−0.482287 + 0.876013i \(0.660194\pi\)
\(230\) 0 0
\(231\) 539886. 0.665691
\(232\) −596954. −0.728151
\(233\) 1.07854e6 1.30151 0.650755 0.759288i \(-0.274453\pi\)
0.650755 + 0.759288i \(0.274453\pi\)
\(234\) −429131. −0.512330
\(235\) 0 0
\(236\) 258290. 0.301876
\(237\) −251704. −0.291085
\(238\) 74960.0 0.0857802
\(239\) 16098.4 0.0182300 0.00911501 0.999958i \(-0.497099\pi\)
0.00911501 + 0.999958i \(0.497099\pi\)
\(240\) 0 0
\(241\) −76424.5 −0.0847598 −0.0423799 0.999102i \(-0.513494\pi\)
−0.0423799 + 0.999102i \(0.513494\pi\)
\(242\) −114967. −0.126193
\(243\) −2.23990e6 −2.43340
\(244\) 189436. 0.203699
\(245\) 0 0
\(246\) −853044. −0.898739
\(247\) −372381. −0.388370
\(248\) 1.21209e6 1.25142
\(249\) −47817.6 −0.0488753
\(250\) 0 0
\(251\) −816629. −0.818164 −0.409082 0.912498i \(-0.634151\pi\)
−0.409082 + 0.912498i \(0.634151\pi\)
\(252\) 383355. 0.380276
\(253\) 511175. 0.502075
\(254\) 1.36054e6 1.32320
\(255\) 0 0
\(256\) −1.09455e6 −1.04384
\(257\) 1.18641e6 1.12047 0.560237 0.828332i \(-0.310710\pi\)
0.560237 + 0.828332i \(0.310710\pi\)
\(258\) 2.61234e6 2.44332
\(259\) −429510. −0.397855
\(260\) 0 0
\(261\) −1.87953e6 −1.70784
\(262\) −359764. −0.323791
\(263\) 1.72216e6 1.53527 0.767635 0.640887i \(-0.221433\pi\)
0.767635 + 0.640887i \(0.221433\pi\)
\(264\) −2.46559e6 −2.17726
\(265\) 0 0
\(266\) −389115. −0.337189
\(267\) −776158. −0.666304
\(268\) −685750. −0.583215
\(269\) 932022. 0.785318 0.392659 0.919684i \(-0.371555\pi\)
0.392659 + 0.919684i \(0.371555\pi\)
\(270\) 0 0
\(271\) −157100. −0.129943 −0.0649714 0.997887i \(-0.520696\pi\)
−0.0649714 + 0.997887i \(0.520696\pi\)
\(272\) −142000. −0.116377
\(273\) 210024. 0.170554
\(274\) 926746. 0.745735
\(275\) 0 0
\(276\) 507240. 0.400812
\(277\) −432798. −0.338911 −0.169456 0.985538i \(-0.554201\pi\)
−0.169456 + 0.985538i \(0.554201\pi\)
\(278\) 1.11367e6 0.864259
\(279\) 3.81630e6 2.93516
\(280\) 0 0
\(281\) −544542. −0.411401 −0.205701 0.978615i \(-0.565947\pi\)
−0.205701 + 0.978615i \(0.565947\pi\)
\(282\) −374668. −0.280558
\(283\) 1.57849e6 1.17159 0.585796 0.810458i \(-0.300782\pi\)
0.585796 + 0.810458i \(0.300782\pi\)
\(284\) −823602. −0.605929
\(285\) 0 0
\(286\) −304945. −0.220448
\(287\) 298747. 0.214091
\(288\) −2.94912e6 −2.09513
\(289\) −1.23968e6 −0.873101
\(290\) 0 0
\(291\) 5.31292e6 3.67791
\(292\) 731036. 0.501743
\(293\) −47169.2 −0.0320989 −0.0160494 0.999871i \(-0.505109\pi\)
−0.0160494 + 0.999871i \(0.505109\pi\)
\(294\) −1.82097e6 −1.22867
\(295\) 0 0
\(296\) 1.96151e6 1.30125
\(297\) −4.67734e6 −3.07686
\(298\) 92683.2 0.0604589
\(299\) 198854. 0.128634
\(300\) 0 0
\(301\) −914876. −0.582031
\(302\) −1.81979e6 −1.14817
\(303\) −880399. −0.550900
\(304\) 737117. 0.457459
\(305\) 0 0
\(306\) −1.07784e6 −0.658039
\(307\) −1.21647e6 −0.736639 −0.368320 0.929699i \(-0.620067\pi\)
−0.368320 + 0.929699i \(0.620067\pi\)
\(308\) 272416. 0.163627
\(309\) −470514. −0.280334
\(310\) 0 0
\(311\) 745149. 0.436860 0.218430 0.975853i \(-0.429906\pi\)
0.218430 + 0.975853i \(0.429906\pi\)
\(312\) −959148. −0.557826
\(313\) 1.98248e6 1.14379 0.571896 0.820326i \(-0.306208\pi\)
0.571896 + 0.820326i \(0.306208\pi\)
\(314\) −1.88030e6 −1.07622
\(315\) 0 0
\(316\) −127005. −0.0715488
\(317\) 191631. 0.107107 0.0535535 0.998565i \(-0.482945\pi\)
0.0535535 + 0.998565i \(0.482945\pi\)
\(318\) −4.63505e6 −2.57032
\(319\) −1.33561e6 −0.734860
\(320\) 0 0
\(321\) −6.29040e6 −3.40734
\(322\) 207790. 0.111683
\(323\) −935304. −0.498823
\(324\) −2.45033e6 −1.29677
\(325\) 0 0
\(326\) 1.52615e6 0.795339
\(327\) −3.56710e6 −1.84479
\(328\) −1.36434e6 −0.700224
\(329\) 131213. 0.0668326
\(330\) 0 0
\(331\) 1.37008e6 0.687346 0.343673 0.939089i \(-0.388329\pi\)
0.343673 + 0.939089i \(0.388329\pi\)
\(332\) −24127.8 −0.0120136
\(333\) 6.17589e6 3.05203
\(334\) 120460. 0.0590848
\(335\) 0 0
\(336\) −415735. −0.200895
\(337\) −2.20098e6 −1.05570 −0.527852 0.849337i \(-0.677002\pi\)
−0.527852 + 0.849337i \(0.677002\pi\)
\(338\) −118628. −0.0564801
\(339\) 3.72146e6 1.75879
\(340\) 0 0
\(341\) 2.71190e6 1.26295
\(342\) 5.59505e6 2.58666
\(343\) 1.35231e6 0.620642
\(344\) 4.17811e6 1.90364
\(345\) 0 0
\(346\) −437859. −0.196627
\(347\) 2.30264e6 1.02660 0.513302 0.858208i \(-0.328422\pi\)
0.513302 + 0.858208i \(0.328422\pi\)
\(348\) −1.32533e6 −0.586647
\(349\) −642226. −0.282244 −0.141122 0.989992i \(-0.545071\pi\)
−0.141122 + 0.989992i \(0.545071\pi\)
\(350\) 0 0
\(351\) −1.81955e6 −0.788309
\(352\) −2.09568e6 −0.901504
\(353\) 3.50057e6 1.49521 0.747604 0.664145i \(-0.231204\pi\)
0.747604 + 0.664145i \(0.231204\pi\)
\(354\) −2.12614e6 −0.901746
\(355\) 0 0
\(356\) −391634. −0.163778
\(357\) 527513. 0.219060
\(358\) 1.24500e6 0.513409
\(359\) 1.77270e6 0.725935 0.362968 0.931802i \(-0.381764\pi\)
0.362968 + 0.931802i \(0.381764\pi\)
\(360\) 0 0
\(361\) 2.37904e6 0.960802
\(362\) −2.03841e6 −0.817561
\(363\) −809052. −0.322263
\(364\) 105974. 0.0419222
\(365\) 0 0
\(366\) −1.55936e6 −0.608478
\(367\) 509693. 0.197535 0.0987673 0.995111i \(-0.468510\pi\)
0.0987673 + 0.995111i \(0.468510\pi\)
\(368\) −393626. −0.151518
\(369\) −4.29566e6 −1.64234
\(370\) 0 0
\(371\) 1.62326e6 0.612283
\(372\) 2.69103e6 1.00823
\(373\) 2.55346e6 0.950293 0.475147 0.879907i \(-0.342395\pi\)
0.475147 + 0.879907i \(0.342395\pi\)
\(374\) −765926. −0.283144
\(375\) 0 0
\(376\) −599233. −0.218588
\(377\) −519573. −0.188275
\(378\) −1.90132e6 −0.684424
\(379\) 1.42480e6 0.509513 0.254757 0.967005i \(-0.418005\pi\)
0.254757 + 0.967005i \(0.418005\pi\)
\(380\) 0 0
\(381\) 9.57446e6 3.37911
\(382\) 2.87062e6 1.00651
\(383\) −940463. −0.327601 −0.163800 0.986494i \(-0.552375\pi\)
−0.163800 + 0.986494i \(0.552375\pi\)
\(384\) −779924. −0.269913
\(385\) 0 0
\(386\) 689868. 0.235666
\(387\) 1.31549e7 4.46489
\(388\) 2.68079e6 0.904032
\(389\) 5.26222e6 1.76317 0.881586 0.472024i \(-0.156476\pi\)
0.881586 + 0.472024i \(0.156476\pi\)
\(390\) 0 0
\(391\) 499460. 0.165218
\(392\) −2.91241e6 −0.957275
\(393\) −2.53176e6 −0.826877
\(394\) −2.72686e6 −0.884957
\(395\) 0 0
\(396\) −3.91704e6 −1.25522
\(397\) 66917.7 0.0213091 0.0106545 0.999943i \(-0.496608\pi\)
0.0106545 + 0.999943i \(0.496608\pi\)
\(398\) −3.29373e6 −1.04227
\(399\) −2.73831e6 −0.861093
\(400\) 0 0
\(401\) −3.26462e6 −1.01384 −0.506922 0.861992i \(-0.669217\pi\)
−0.506922 + 0.861992i \(0.669217\pi\)
\(402\) 5.64481e6 1.74215
\(403\) 1.05497e6 0.323576
\(404\) −444232. −0.135412
\(405\) 0 0
\(406\) −542922. −0.163464
\(407\) 4.38865e6 1.31324
\(408\) −2.40908e6 −0.716474
\(409\) 5.49644e6 1.62470 0.812350 0.583171i \(-0.198188\pi\)
0.812350 + 0.583171i \(0.198188\pi\)
\(410\) 0 0
\(411\) 6.52176e6 1.90441
\(412\) −237412. −0.0689063
\(413\) 744602. 0.214807
\(414\) −2.98780e6 −0.856743
\(415\) 0 0
\(416\) −815249. −0.230971
\(417\) 7.83719e6 2.20709
\(418\) 3.97590e6 1.11300
\(419\) 4.68601e6 1.30397 0.651986 0.758231i \(-0.273936\pi\)
0.651986 + 0.758231i \(0.273936\pi\)
\(420\) 0 0
\(421\) 4.86774e6 1.33851 0.669256 0.743032i \(-0.266613\pi\)
0.669256 + 0.743032i \(0.266613\pi\)
\(422\) −3.02538e6 −0.826989
\(423\) −1.88671e6 −0.512688
\(424\) −7.41318e6 −2.00258
\(425\) 0 0
\(426\) 6.77956e6 1.81000
\(427\) 546109. 0.144947
\(428\) −3.17401e6 −0.837527
\(429\) −2.14598e6 −0.562966
\(430\) 0 0
\(431\) 3.25405e6 0.843783 0.421892 0.906646i \(-0.361366\pi\)
0.421892 + 0.906646i \(0.361366\pi\)
\(432\) 3.60175e6 0.928547
\(433\) 693375. 0.177725 0.0888625 0.996044i \(-0.471677\pi\)
0.0888625 + 0.996044i \(0.471677\pi\)
\(434\) 1.10238e6 0.280935
\(435\) 0 0
\(436\) −1.79989e6 −0.453450
\(437\) −2.59268e6 −0.649450
\(438\) −6.01759e6 −1.49878
\(439\) −5.29607e6 −1.31157 −0.655787 0.754946i \(-0.727663\pi\)
−0.655787 + 0.754946i \(0.727663\pi\)
\(440\) 0 0
\(441\) −9.16981e6 −2.24525
\(442\) −297956. −0.0725432
\(443\) −1.05676e6 −0.255838 −0.127919 0.991785i \(-0.540830\pi\)
−0.127919 + 0.991785i \(0.540830\pi\)
\(444\) 4.35487e6 1.04838
\(445\) 0 0
\(446\) 554718. 0.132049
\(447\) 652236. 0.154396
\(448\) −1.30703e6 −0.307673
\(449\) 1.60061e6 0.374687 0.187344 0.982294i \(-0.440012\pi\)
0.187344 + 0.982294i \(0.440012\pi\)
\(450\) 0 0
\(451\) −3.05254e6 −0.706675
\(452\) 1.87777e6 0.432312
\(453\) −1.28064e7 −2.93212
\(454\) 4.74132e6 1.07959
\(455\) 0 0
\(456\) 1.25055e7 2.81636
\(457\) 20508.5 0.00459350 0.00229675 0.999997i \(-0.499269\pi\)
0.00229675 + 0.999997i \(0.499269\pi\)
\(458\) 3.17934e6 0.708229
\(459\) −4.57014e6 −1.01251
\(460\) 0 0
\(461\) −5.97691e6 −1.30986 −0.654930 0.755690i \(-0.727302\pi\)
−0.654930 + 0.755690i \(0.727302\pi\)
\(462\) −2.24241e6 −0.488777
\(463\) 758041. 0.164339 0.0821694 0.996618i \(-0.473815\pi\)
0.0821694 + 0.996618i \(0.473815\pi\)
\(464\) 1.02848e6 0.221769
\(465\) 0 0
\(466\) −4.47972e6 −0.955621
\(467\) 5.52758e6 1.17285 0.586426 0.810003i \(-0.300535\pi\)
0.586426 + 0.810003i \(0.300535\pi\)
\(468\) −1.52379e6 −0.321595
\(469\) −1.97689e6 −0.415002
\(470\) 0 0
\(471\) −1.32322e7 −2.74839
\(472\) −3.40049e6 −0.702566
\(473\) 9.34802e6 1.92118
\(474\) 1.04545e6 0.213726
\(475\) 0 0
\(476\) 266173. 0.0538451
\(477\) −2.33406e7 −4.69696
\(478\) −66864.5 −0.0133852
\(479\) 6.18197e6 1.23109 0.615543 0.788103i \(-0.288937\pi\)
0.615543 + 0.788103i \(0.288937\pi\)
\(480\) 0 0
\(481\) 1.70725e6 0.336461
\(482\) 317429. 0.0622341
\(483\) 1.46228e6 0.285208
\(484\) −408231. −0.0792123
\(485\) 0 0
\(486\) 9.30343e6 1.78670
\(487\) −6.33627e6 −1.21063 −0.605315 0.795986i \(-0.706953\pi\)
−0.605315 + 0.795986i \(0.706953\pi\)
\(488\) −2.49400e6 −0.474076
\(489\) 1.07399e7 2.03108
\(490\) 0 0
\(491\) 4.76619e6 0.892211 0.446105 0.894980i \(-0.352811\pi\)
0.446105 + 0.894980i \(0.352811\pi\)
\(492\) −3.02904e6 −0.564148
\(493\) −1.30500e6 −0.241821
\(494\) 1.54668e6 0.285157
\(495\) 0 0
\(496\) −2.08828e6 −0.381140
\(497\) −2.37429e6 −0.431164
\(498\) 198610. 0.0358863
\(499\) −6.32136e6 −1.13647 −0.568236 0.822865i \(-0.692374\pi\)
−0.568236 + 0.822865i \(0.692374\pi\)
\(500\) 0 0
\(501\) 847708. 0.150887
\(502\) 3.39186e6 0.600730
\(503\) 2.42758e6 0.427813 0.213906 0.976854i \(-0.431381\pi\)
0.213906 + 0.976854i \(0.431381\pi\)
\(504\) −5.04701e6 −0.885030
\(505\) 0 0
\(506\) −2.12316e6 −0.368644
\(507\) −834817. −0.144235
\(508\) 4.83108e6 0.830586
\(509\) −5.22784e6 −0.894391 −0.447196 0.894436i \(-0.647577\pi\)
−0.447196 + 0.894436i \(0.647577\pi\)
\(510\) 0 0
\(511\) 2.10744e6 0.357028
\(512\) 3.69234e6 0.622482
\(513\) 2.37235e7 3.98002
\(514\) −4.92775e6 −0.822698
\(515\) 0 0
\(516\) 9.27607e6 1.53370
\(517\) −1.34071e6 −0.220602
\(518\) 1.78397e6 0.292121
\(519\) −3.08133e6 −0.502134
\(520\) 0 0
\(521\) −1.15960e7 −1.87161 −0.935806 0.352516i \(-0.885326\pi\)
−0.935806 + 0.352516i \(0.885326\pi\)
\(522\) 7.80662e6 1.25397
\(523\) −3.49229e6 −0.558285 −0.279143 0.960250i \(-0.590050\pi\)
−0.279143 + 0.960250i \(0.590050\pi\)
\(524\) −1.27747e6 −0.203247
\(525\) 0 0
\(526\) −7.15299e6 −1.12726
\(527\) 2.64975e6 0.415602
\(528\) 4.24790e6 0.663116
\(529\) −5.05183e6 −0.784891
\(530\) 0 0
\(531\) −1.07066e7 −1.64784
\(532\) −1.38169e6 −0.211657
\(533\) −1.18748e6 −0.181054
\(534\) 3.22377e6 0.489227
\(535\) 0 0
\(536\) 9.02816e6 1.35734
\(537\) 8.76143e6 1.31111
\(538\) −3.87115e6 −0.576612
\(539\) −6.51616e6 −0.966095
\(540\) 0 0
\(541\) 216425. 0.0317917 0.0158959 0.999874i \(-0.494940\pi\)
0.0158959 + 0.999874i \(0.494940\pi\)
\(542\) 652513. 0.0954094
\(543\) −1.43448e7 −2.08783
\(544\) −2.04765e6 −0.296659
\(545\) 0 0
\(546\) −872332. −0.125228
\(547\) 658142. 0.0940484 0.0470242 0.998894i \(-0.485026\pi\)
0.0470242 + 0.998894i \(0.485026\pi\)
\(548\) 3.29075e6 0.468105
\(549\) −7.85245e6 −1.11192
\(550\) 0 0
\(551\) 6.77424e6 0.950565
\(552\) −6.67801e6 −0.932824
\(553\) −366131. −0.0509124
\(554\) 1.79762e6 0.248842
\(555\) 0 0
\(556\) 3.95448e6 0.542504
\(557\) 6.55817e6 0.895663 0.447831 0.894118i \(-0.352196\pi\)
0.447831 + 0.894118i \(0.352196\pi\)
\(558\) −1.58510e7 −2.15511
\(559\) 3.63652e6 0.492216
\(560\) 0 0
\(561\) −5.39003e6 −0.723076
\(562\) 2.26175e6 0.302068
\(563\) −9.44685e6 −1.25608 −0.628038 0.778183i \(-0.716142\pi\)
−0.628038 + 0.778183i \(0.716142\pi\)
\(564\) −1.33039e6 −0.176109
\(565\) 0 0
\(566\) −6.55626e6 −0.860231
\(567\) −7.06384e6 −0.922748
\(568\) 1.08430e7 1.41020
\(569\) 1.98661e6 0.257236 0.128618 0.991694i \(-0.458946\pi\)
0.128618 + 0.991694i \(0.458946\pi\)
\(570\) 0 0
\(571\) 1.05472e7 1.35378 0.676888 0.736086i \(-0.263328\pi\)
0.676888 + 0.736086i \(0.263328\pi\)
\(572\) −1.08282e6 −0.138377
\(573\) 2.02013e7 2.57036
\(574\) −1.24084e6 −0.157195
\(575\) 0 0
\(576\) 1.87936e7 2.36023
\(577\) 3.57968e6 0.447615 0.223807 0.974633i \(-0.428151\pi\)
0.223807 + 0.974633i \(0.428151\pi\)
\(578\) 5.14899e6 0.641066
\(579\) 4.85478e6 0.601830
\(580\) 0 0
\(581\) −69555.9 −0.00854857
\(582\) −2.20672e7 −2.70047
\(583\) −1.65861e7 −2.02103
\(584\) −9.62437e6 −1.16772
\(585\) 0 0
\(586\) 195917. 0.0235683
\(587\) 8.78869e6 1.05276 0.526379 0.850250i \(-0.323549\pi\)
0.526379 + 0.850250i \(0.323549\pi\)
\(588\) −6.46601e6 −0.771246
\(589\) −1.37548e7 −1.63367
\(590\) 0 0
\(591\) −1.91896e7 −2.25995
\(592\) −3.37945e6 −0.396316
\(593\) −6.61381e6 −0.772352 −0.386176 0.922425i \(-0.626204\pi\)
−0.386176 + 0.922425i \(0.626204\pi\)
\(594\) 1.94273e7 2.25916
\(595\) 0 0
\(596\) 329105. 0.0379506
\(597\) −2.31789e7 −2.66168
\(598\) −825940. −0.0944486
\(599\) 1.20269e7 1.36957 0.684787 0.728743i \(-0.259895\pi\)
0.684787 + 0.728743i \(0.259895\pi\)
\(600\) 0 0
\(601\) 3.83969e6 0.433621 0.216810 0.976214i \(-0.430435\pi\)
0.216810 + 0.976214i \(0.430435\pi\)
\(602\) 3.79993e6 0.427351
\(603\) 2.84255e7 3.18357
\(604\) −6.46184e6 −0.720716
\(605\) 0 0
\(606\) 3.65673e6 0.404494
\(607\) −5.50595e6 −0.606542 −0.303271 0.952904i \(-0.598079\pi\)
−0.303271 + 0.952904i \(0.598079\pi\)
\(608\) 1.06293e7 1.16613
\(609\) −3.82069e6 −0.417444
\(610\) 0 0
\(611\) −521557. −0.0565195
\(612\) −3.82727e6 −0.413058
\(613\) −7.77688e6 −0.835899 −0.417950 0.908470i \(-0.637251\pi\)
−0.417950 + 0.908470i \(0.637251\pi\)
\(614\) 5.05259e6 0.540871
\(615\) 0 0
\(616\) −3.58646e6 −0.380815
\(617\) 5.24549e6 0.554719 0.277359 0.960766i \(-0.410541\pi\)
0.277359 + 0.960766i \(0.410541\pi\)
\(618\) 1.95428e6 0.205833
\(619\) 1.53925e7 1.61467 0.807333 0.590096i \(-0.200910\pi\)
0.807333 + 0.590096i \(0.200910\pi\)
\(620\) 0 0
\(621\) −1.26685e7 −1.31825
\(622\) −3.09497e6 −0.320760
\(623\) −1.12901e6 −0.116540
\(624\) 1.65249e6 0.169894
\(625\) 0 0
\(626\) −8.23420e6 −0.839819
\(627\) 2.79795e7 2.84231
\(628\) −6.67669e6 −0.675557
\(629\) 4.28807e6 0.432151
\(630\) 0 0
\(631\) −959665. −0.0959503 −0.0479752 0.998849i \(-0.515277\pi\)
−0.0479752 + 0.998849i \(0.515277\pi\)
\(632\) 1.67207e6 0.166518
\(633\) −2.12904e7 −2.11191
\(634\) −795939. −0.0786423
\(635\) 0 0
\(636\) −1.64584e7 −1.61341
\(637\) −2.53488e6 −0.247519
\(638\) 5.54747e6 0.539564
\(639\) 3.41397e7 3.30756
\(640\) 0 0
\(641\) −4.04738e6 −0.389071 −0.194536 0.980895i \(-0.562320\pi\)
−0.194536 + 0.980895i \(0.562320\pi\)
\(642\) 2.61271e7 2.50181
\(643\) 3.34301e6 0.318867 0.159434 0.987209i \(-0.449033\pi\)
0.159434 + 0.987209i \(0.449033\pi\)
\(644\) 737835. 0.0701043
\(645\) 0 0
\(646\) 3.88478e6 0.366256
\(647\) −1.60437e6 −0.150676 −0.0753379 0.997158i \(-0.524004\pi\)
−0.0753379 + 0.997158i \(0.524004\pi\)
\(648\) 3.22596e7 3.01801
\(649\) −7.60820e6 −0.709039
\(650\) 0 0
\(651\) 7.75771e6 0.717433
\(652\) 5.41913e6 0.499242
\(653\) −8.15286e6 −0.748216 −0.374108 0.927385i \(-0.622051\pi\)
−0.374108 + 0.927385i \(0.622051\pi\)
\(654\) 1.48159e7 1.35452
\(655\) 0 0
\(656\) 2.35058e6 0.213263
\(657\) −3.03027e7 −2.73884
\(658\) −544994. −0.0490713
\(659\) −9.64758e6 −0.865376 −0.432688 0.901544i \(-0.642435\pi\)
−0.432688 + 0.901544i \(0.642435\pi\)
\(660\) 0 0
\(661\) −1.08154e7 −0.962802 −0.481401 0.876500i \(-0.659872\pi\)
−0.481401 + 0.876500i \(0.659872\pi\)
\(662\) −5.69061e6 −0.504677
\(663\) −2.09680e6 −0.185256
\(664\) 317652. 0.0279596
\(665\) 0 0
\(666\) −2.56515e7 −2.24093
\(667\) −3.61750e6 −0.314843
\(668\) 427736. 0.0370881
\(669\) 3.90370e6 0.337218
\(670\) 0 0
\(671\) −5.58004e6 −0.478444
\(672\) −5.99494e6 −0.512108
\(673\) −8.41679e6 −0.716323 −0.358161 0.933660i \(-0.616596\pi\)
−0.358161 + 0.933660i \(0.616596\pi\)
\(674\) 9.14177e6 0.775141
\(675\) 0 0
\(676\) −421232. −0.0354531
\(677\) −1.30052e7 −1.09055 −0.545276 0.838257i \(-0.683575\pi\)
−0.545276 + 0.838257i \(0.683575\pi\)
\(678\) −1.54571e7 −1.29138
\(679\) 7.72821e6 0.643287
\(680\) 0 0
\(681\) 3.33660e7 2.75700
\(682\) −1.12639e7 −0.927313
\(683\) 6.34198e6 0.520204 0.260102 0.965581i \(-0.416244\pi\)
0.260102 + 0.965581i \(0.416244\pi\)
\(684\) 1.98673e7 1.62367
\(685\) 0 0
\(686\) −5.61682e6 −0.455701
\(687\) 2.23739e7 1.80863
\(688\) −7.19837e6 −0.579780
\(689\) −6.45223e6 −0.517800
\(690\) 0 0
\(691\) −5.39316e6 −0.429683 −0.214841 0.976649i \(-0.568923\pi\)
−0.214841 + 0.976649i \(0.568923\pi\)
\(692\) −1.55478e6 −0.123425
\(693\) −1.12921e7 −0.893184
\(694\) −9.56401e6 −0.753774
\(695\) 0 0
\(696\) 1.74485e7 1.36532
\(697\) −2.98258e6 −0.232547
\(698\) 2.66748e6 0.207235
\(699\) −3.15250e7 −2.44040
\(700\) 0 0
\(701\) 2.51700e6 0.193459 0.0967293 0.995311i \(-0.469162\pi\)
0.0967293 + 0.995311i \(0.469162\pi\)
\(702\) 7.55750e6 0.578809
\(703\) −2.22593e7 −1.69872
\(704\) 1.33550e7 1.01557
\(705\) 0 0
\(706\) −1.45396e7 −1.09784
\(707\) −1.28064e6 −0.0963556
\(708\) −7.54964e6 −0.566035
\(709\) −7.70344e6 −0.575532 −0.287766 0.957701i \(-0.592913\pi\)
−0.287766 + 0.957701i \(0.592913\pi\)
\(710\) 0 0
\(711\) 5.26456e6 0.390560
\(712\) 5.15601e6 0.381166
\(713\) 7.34515e6 0.541099
\(714\) −2.19102e6 −0.160843
\(715\) 0 0
\(716\) 4.42084e6 0.322272
\(717\) −470544. −0.0341824
\(718\) −7.36288e6 −0.533012
\(719\) 9.67017e6 0.697609 0.348804 0.937196i \(-0.386588\pi\)
0.348804 + 0.937196i \(0.386588\pi\)
\(720\) 0 0
\(721\) −684413. −0.0490321
\(722\) −9.88133e6 −0.705460
\(723\) 2.23383e6 0.158929
\(724\) −7.23811e6 −0.513191
\(725\) 0 0
\(726\) 3.36039e6 0.236618
\(727\) −6.56744e6 −0.460850 −0.230425 0.973090i \(-0.574012\pi\)
−0.230425 + 0.973090i \(0.574012\pi\)
\(728\) −1.39518e6 −0.0975670
\(729\) 2.50984e7 1.74915
\(730\) 0 0
\(731\) 9.13379e6 0.632204
\(732\) −5.53709e6 −0.381947
\(733\) −1.34964e7 −0.927808 −0.463904 0.885885i \(-0.653552\pi\)
−0.463904 + 0.885885i \(0.653552\pi\)
\(734\) −2.11701e6 −0.145038
\(735\) 0 0
\(736\) −5.67612e6 −0.386240
\(737\) 2.01994e7 1.36984
\(738\) 1.78420e7 1.20588
\(739\) 1.14388e7 0.770492 0.385246 0.922814i \(-0.374117\pi\)
0.385246 + 0.922814i \(0.374117\pi\)
\(740\) 0 0
\(741\) 1.08844e7 0.728215
\(742\) −6.74218e6 −0.449563
\(743\) 1.51089e7 1.00406 0.502031 0.864850i \(-0.332586\pi\)
0.502031 + 0.864850i \(0.332586\pi\)
\(744\) −3.54284e7 −2.34649
\(745\) 0 0
\(746\) −1.06058e7 −0.697744
\(747\) 1.00014e6 0.0655780
\(748\) −2.71970e6 −0.177732
\(749\) −9.15007e6 −0.595964
\(750\) 0 0
\(751\) 2.10421e6 0.136141 0.0680706 0.997681i \(-0.478316\pi\)
0.0680706 + 0.997681i \(0.478316\pi\)
\(752\) 1.03241e6 0.0665742
\(753\) 2.38695e7 1.53411
\(754\) 2.15804e6 0.138239
\(755\) 0 0
\(756\) −6.75132e6 −0.429620
\(757\) 1.09867e7 0.696828 0.348414 0.937341i \(-0.386720\pi\)
0.348414 + 0.937341i \(0.386720\pi\)
\(758\) −5.91789e6 −0.374106
\(759\) −1.49413e7 −0.941419
\(760\) 0 0
\(761\) −1.14683e7 −0.717859 −0.358929 0.933365i \(-0.616858\pi\)
−0.358929 + 0.933365i \(0.616858\pi\)
\(762\) −3.97675e7 −2.48108
\(763\) −5.18873e6 −0.322664
\(764\) 1.01932e7 0.631795
\(765\) 0 0
\(766\) 3.90621e6 0.240538
\(767\) −2.95970e6 −0.181660
\(768\) 3.19928e7 1.95726
\(769\) −2.18586e6 −0.133293 −0.0666464 0.997777i \(-0.521230\pi\)
−0.0666464 + 0.997777i \(0.521230\pi\)
\(770\) 0 0
\(771\) −3.46779e7 −2.10095
\(772\) 2.44963e6 0.147930
\(773\) 4.06142e6 0.244472 0.122236 0.992501i \(-0.460993\pi\)
0.122236 + 0.992501i \(0.460993\pi\)
\(774\) −5.46389e7 −3.27831
\(775\) 0 0
\(776\) −3.52937e7 −2.10398
\(777\) 1.25543e7 0.746000
\(778\) −2.18566e7 −1.29459
\(779\) 1.54825e7 0.914108
\(780\) 0 0
\(781\) 2.42600e7 1.42319
\(782\) −2.07450e6 −0.121310
\(783\) 3.31007e7 1.92945
\(784\) 5.01772e6 0.291552
\(785\) 0 0
\(786\) 1.05156e7 0.607127
\(787\) 1.97898e7 1.13895 0.569475 0.822008i \(-0.307146\pi\)
0.569475 + 0.822008i \(0.307146\pi\)
\(788\) −9.68271e6 −0.555496
\(789\) −5.03375e7 −2.87872
\(790\) 0 0
\(791\) 5.41327e6 0.307623
\(792\) 5.15694e7 2.92132
\(793\) −2.17071e6 −0.122580
\(794\) −277942. −0.0156460
\(795\) 0 0
\(796\) −1.16956e7 −0.654243
\(797\) −2.61426e6 −0.145782 −0.0728908 0.997340i \(-0.523222\pi\)
−0.0728908 + 0.997340i \(0.523222\pi\)
\(798\) 1.13735e7 0.632250
\(799\) −1.30999e6 −0.0725939
\(800\) 0 0
\(801\) 1.62339e7 0.894007
\(802\) 1.35596e7 0.744406
\(803\) −2.15334e7 −1.17848
\(804\) 2.00440e7 1.09356
\(805\) 0 0
\(806\) −4.38180e6 −0.237583
\(807\) −2.72423e7 −1.47252
\(808\) 5.84848e6 0.315148
\(809\) −134453. −0.00722267 −0.00361134 0.999993i \(-0.501150\pi\)
−0.00361134 + 0.999993i \(0.501150\pi\)
\(810\) 0 0
\(811\) −1.38880e7 −0.741459 −0.370729 0.928741i \(-0.620892\pi\)
−0.370729 + 0.928741i \(0.620892\pi\)
\(812\) −1.92784e6 −0.102608
\(813\) 4.59191e6 0.243650
\(814\) −1.82282e7 −0.964237
\(815\) 0 0
\(816\) 4.15055e6 0.218213
\(817\) −4.74132e7 −2.48510
\(818\) −2.28294e7 −1.19292
\(819\) −4.39278e6 −0.228839
\(820\) 0 0
\(821\) −2.09003e7 −1.08217 −0.541084 0.840969i \(-0.681986\pi\)
−0.541084 + 0.840969i \(0.681986\pi\)
\(822\) −2.70881e7 −1.39830
\(823\) 7.88591e6 0.405837 0.202919 0.979196i \(-0.434957\pi\)
0.202919 + 0.979196i \(0.434957\pi\)
\(824\) 3.12562e6 0.160368
\(825\) 0 0
\(826\) −3.09270e6 −0.157720
\(827\) 3.09009e7 1.57111 0.785556 0.618790i \(-0.212377\pi\)
0.785556 + 0.618790i \(0.212377\pi\)
\(828\) −1.06093e7 −0.537786
\(829\) 3.72829e7 1.88418 0.942092 0.335356i \(-0.108856\pi\)
0.942092 + 0.335356i \(0.108856\pi\)
\(830\) 0 0
\(831\) 1.26504e7 0.635478
\(832\) 5.19527e6 0.260196
\(833\) −6.36683e6 −0.317915
\(834\) −3.25517e7 −1.62054
\(835\) 0 0
\(836\) 1.41179e7 0.698640
\(837\) −6.72094e7 −3.31602
\(838\) −1.94633e7 −0.957429
\(839\) 3.71338e7 1.82123 0.910615 0.413256i \(-0.135608\pi\)
0.910615 + 0.413256i \(0.135608\pi\)
\(840\) 0 0
\(841\) −1.10592e7 −0.539181
\(842\) −2.02181e7 −0.982790
\(843\) 1.59166e7 0.771401
\(844\) −1.07427e7 −0.519109
\(845\) 0 0
\(846\) 7.83642e6 0.376437
\(847\) −1.17685e6 −0.0563655
\(848\) 1.27720e7 0.609915
\(849\) −4.61382e7 −2.19680
\(850\) 0 0
\(851\) 1.18866e7 0.562645
\(852\) 2.40733e7 1.13615
\(853\) 3.69954e7 1.74091 0.870453 0.492252i \(-0.163826\pi\)
0.870453 + 0.492252i \(0.163826\pi\)
\(854\) −2.26826e6 −0.106426
\(855\) 0 0
\(856\) 4.17871e7 1.94920
\(857\) 1.25620e7 0.584260 0.292130 0.956379i \(-0.405636\pi\)
0.292130 + 0.956379i \(0.405636\pi\)
\(858\) 8.91331e6 0.413353
\(859\) 5.95648e6 0.275427 0.137714 0.990472i \(-0.456025\pi\)
0.137714 + 0.990472i \(0.456025\pi\)
\(860\) 0 0
\(861\) −8.73216e6 −0.401434
\(862\) −1.35157e7 −0.619540
\(863\) 1.36218e7 0.622600 0.311300 0.950312i \(-0.399236\pi\)
0.311300 + 0.950312i \(0.399236\pi\)
\(864\) 5.19375e7 2.36699
\(865\) 0 0
\(866\) −2.87993e6 −0.130493
\(867\) 3.62349e7 1.63711
\(868\) 3.91439e6 0.176345
\(869\) 3.74105e6 0.168052
\(870\) 0 0
\(871\) 7.85787e6 0.350962
\(872\) 2.36962e7 1.05533
\(873\) −1.11123e8 −4.93480
\(874\) 1.07687e7 0.476853
\(875\) 0 0
\(876\) −2.13676e7 −0.940798
\(877\) 2.57256e7 1.12945 0.564725 0.825279i \(-0.308982\pi\)
0.564725 + 0.825279i \(0.308982\pi\)
\(878\) 2.19972e7 0.963011
\(879\) 1.37872e6 0.0601872
\(880\) 0 0
\(881\) 4.32713e6 0.187828 0.0939140 0.995580i \(-0.470062\pi\)
0.0939140 + 0.995580i \(0.470062\pi\)
\(882\) 3.80868e7 1.64855
\(883\) −3.46067e7 −1.49368 −0.746841 0.665003i \(-0.768430\pi\)
−0.746841 + 0.665003i \(0.768430\pi\)
\(884\) −1.05800e6 −0.0455361
\(885\) 0 0
\(886\) 4.38923e6 0.187847
\(887\) −3.18896e7 −1.36094 −0.680472 0.732774i \(-0.738225\pi\)
−0.680472 + 0.732774i \(0.738225\pi\)
\(888\) −5.73336e7 −2.43993
\(889\) 1.39271e7 0.591025
\(890\) 0 0
\(891\) 7.21769e7 3.04582
\(892\) 1.96973e6 0.0828884
\(893\) 6.80010e6 0.285356
\(894\) −2.70906e6 −0.113364
\(895\) 0 0
\(896\) −1.13448e6 −0.0472094
\(897\) −5.81236e6 −0.241197
\(898\) −6.64811e6 −0.275111
\(899\) −1.91917e7 −0.791978
\(900\) 0 0
\(901\) −1.62060e7 −0.665064
\(902\) 1.26787e7 0.518870
\(903\) 2.67411e7 1.09134
\(904\) −2.47216e7 −1.00613
\(905\) 0 0
\(906\) 5.31913e7 2.15288
\(907\) 2.40329e7 0.970035 0.485018 0.874504i \(-0.338813\pi\)
0.485018 + 0.874504i \(0.338813\pi\)
\(908\) 1.68358e7 0.677671
\(909\) 1.84141e7 0.739166
\(910\) 0 0
\(911\) −1.88212e6 −0.0751366 −0.0375683 0.999294i \(-0.511961\pi\)
−0.0375683 + 0.999294i \(0.511961\pi\)
\(912\) −2.15454e7 −0.857763
\(913\) 710708. 0.0282172
\(914\) −85182.0 −0.00337274
\(915\) 0 0
\(916\) 1.12894e7 0.444562
\(917\) −3.68271e6 −0.144625
\(918\) 1.89821e7 0.743424
\(919\) −2.08679e6 −0.0815061 −0.0407530 0.999169i \(-0.512976\pi\)
−0.0407530 + 0.999169i \(0.512976\pi\)
\(920\) 0 0
\(921\) 3.55565e7 1.38124
\(922\) 2.48251e7 0.961752
\(923\) 9.43750e6 0.364630
\(924\) −7.96251e6 −0.306810
\(925\) 0 0
\(926\) −3.14852e6 −0.120664
\(927\) 9.84111e6 0.376136
\(928\) 1.48308e7 0.565319
\(929\) 4.37732e7 1.66406 0.832030 0.554730i \(-0.187179\pi\)
0.832030 + 0.554730i \(0.187179\pi\)
\(930\) 0 0
\(931\) 3.30500e7 1.24968
\(932\) −1.59069e7 −0.599853
\(933\) −2.17801e7 −0.819137
\(934\) −2.29588e7 −0.861156
\(935\) 0 0
\(936\) 2.00612e7 0.748458
\(937\) 1.71324e7 0.637484 0.318742 0.947842i \(-0.396740\pi\)
0.318742 + 0.947842i \(0.396740\pi\)
\(938\) 8.21099e6 0.304711
\(939\) −5.79463e7 −2.14468
\(940\) 0 0
\(941\) −2.91171e7 −1.07195 −0.535975 0.844234i \(-0.680056\pi\)
−0.535975 + 0.844234i \(0.680056\pi\)
\(942\) 5.49598e7 2.01798
\(943\) −8.26778e6 −0.302768
\(944\) 5.85864e6 0.213977
\(945\) 0 0
\(946\) −3.88270e7 −1.41061
\(947\) 3.57121e7 1.29402 0.647009 0.762482i \(-0.276019\pi\)
0.647009 + 0.762482i \(0.276019\pi\)
\(948\) 3.71225e6 0.134158
\(949\) −8.37680e6 −0.301934
\(950\) 0 0
\(951\) −5.60123e6 −0.200832
\(952\) −3.50426e6 −0.125315
\(953\) 1.21150e7 0.432105 0.216053 0.976382i \(-0.430682\pi\)
0.216053 + 0.976382i \(0.430682\pi\)
\(954\) 9.69452e7 3.44870
\(955\) 0 0
\(956\) −237427. −0.00840204
\(957\) 3.90390e7 1.37790
\(958\) −2.56768e7 −0.903913
\(959\) 9.48661e6 0.333092
\(960\) 0 0
\(961\) 1.03386e7 0.361120
\(962\) −7.09105e6 −0.247043
\(963\) 1.31568e8 4.57177
\(964\) 1.12715e6 0.0390650
\(965\) 0 0
\(966\) −6.07356e6 −0.209411
\(967\) 1.23685e6 0.0425353 0.0212676 0.999774i \(-0.493230\pi\)
0.0212676 + 0.999774i \(0.493230\pi\)
\(968\) 5.37452e6 0.184354
\(969\) 2.73383e7 0.935322
\(970\) 0 0
\(971\) 2.65552e7 0.903861 0.451931 0.892053i \(-0.350735\pi\)
0.451931 + 0.892053i \(0.350735\pi\)
\(972\) 3.30352e7 1.12153
\(973\) 1.14000e7 0.386032
\(974\) 2.63177e7 0.888894
\(975\) 0 0
\(976\) 4.29686e6 0.144387
\(977\) 2.10622e7 0.705939 0.352970 0.935635i \(-0.385172\pi\)
0.352970 + 0.935635i \(0.385172\pi\)
\(978\) −4.46081e7 −1.49131
\(979\) 1.15360e7 0.384678
\(980\) 0 0
\(981\) 7.46083e7 2.47523
\(982\) −1.97963e7 −0.655098
\(983\) 5.95953e7 1.96711 0.983554 0.180615i \(-0.0578088\pi\)
0.983554 + 0.180615i \(0.0578088\pi\)
\(984\) 3.98785e7 1.31296
\(985\) 0 0
\(986\) 5.42033e6 0.177555
\(987\) −3.83527e6 −0.125315
\(988\) 5.49206e6 0.178996
\(989\) 2.53190e7 0.823107
\(990\) 0 0
\(991\) 7.17026e6 0.231927 0.115963 0.993253i \(-0.463004\pi\)
0.115963 + 0.993253i \(0.463004\pi\)
\(992\) −3.01131e7 −0.971576
\(993\) −4.00464e7 −1.28881
\(994\) 9.86160e6 0.316578
\(995\) 0 0
\(996\) 705238. 0.0225262
\(997\) 5.19624e7 1.65558 0.827791 0.561036i \(-0.189597\pi\)
0.827791 + 0.561036i \(0.189597\pi\)
\(998\) 2.62557e7 0.834445
\(999\) −1.08765e8 −3.44805
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.f.1.3 6
5.2 odd 4 325.6.b.f.274.5 12
5.3 odd 4 325.6.b.f.274.8 12
5.4 even 2 65.6.a.e.1.4 6
15.14 odd 2 585.6.a.k.1.3 6
20.19 odd 2 1040.6.a.r.1.1 6
65.64 even 2 845.6.a.g.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.e.1.4 6 5.4 even 2
325.6.a.f.1.3 6 1.1 even 1 trivial
325.6.b.f.274.5 12 5.2 odd 4
325.6.b.f.274.8 12 5.3 odd 4
585.6.a.k.1.3 6 15.14 odd 2
845.6.a.g.1.3 6 65.64 even 2
1040.6.a.r.1.1 6 20.19 odd 2