L(s) = 1 | − 9-s − 4·13-s − 2·17-s − 8·19-s + 6·25-s − 16·43-s + 10·49-s − 4·53-s − 8·59-s − 24·67-s + 81-s − 24·83-s − 12·89-s − 12·101-s + 4·117-s + 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 2·153-s + 157-s + 163-s + 167-s − 14·169-s + ⋯ |
L(s) = 1 | − 1/3·9-s − 1.10·13-s − 0.485·17-s − 1.83·19-s + 6/5·25-s − 2.43·43-s + 10/7·49-s − 0.549·53-s − 1.04·59-s − 2.93·67-s + 1/9·81-s − 2.63·83-s − 1.27·89-s − 1.19·101-s + 0.369·117-s + 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.161·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + ⋯ |
Λ(s)=(=(10653696s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(10653696s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
10653696
= 212⋅32⋅172
|
Sign: |
1
|
Analytic conductor: |
679.288 |
Root analytic conductor: |
5.10521 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 10653696, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | 1+T2 |
| 17 | C2 | 1+2T+pT2 |
good | 5 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 7 | C22 | 1−10T2+p2T4 |
| 11 | C2 | (1−pT2)2 |
| 13 | C2 | (1+2T+pT2)2 |
| 19 | C2 | (1+4T+pT2)2 |
| 23 | C22 | 1−42T2+p2T4 |
| 29 | C22 | 1−54T2+p2T4 |
| 31 | C22 | 1−58T2+p2T4 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−pT2)2 |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1+2T+pT2)2 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C22 | 1−86T2+p2T4 |
| 67 | C2 | (1+12T+pT2)2 |
| 71 | C22 | 1−138T2+p2T4 |
| 73 | C2 | (1−pT2)2 |
| 79 | C22 | 1−58T2+p2T4 |
| 83 | C2 | (1+12T+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C22 | 1−178T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.428602581108460320200220546494, −8.308214659363619700251168385294, −7.62681910073560329533321596098, −7.34927671293210359354178302810, −6.91196014220385073134643908580, −6.69344832447220363833996743583, −6.16862100960228138437264922416, −5.93011284460378139820141700956, −5.36373660397584487843703308909, −4.95037755790314960174178662396, −4.50696747772029112664654524817, −4.39562714406982276701382240793, −3.75195544275812733848703153186, −3.20349456927637199665081096295, −2.63384933237430905026090025816, −2.53177668592740285158076870180, −1.71970836998179909189495326566, −1.33236530530530222750183972939, 0, 0,
1.33236530530530222750183972939, 1.71970836998179909189495326566, 2.53177668592740285158076870180, 2.63384933237430905026090025816, 3.20349456927637199665081096295, 3.75195544275812733848703153186, 4.39562714406982276701382240793, 4.50696747772029112664654524817, 4.95037755790314960174178662396, 5.36373660397584487843703308909, 5.93011284460378139820141700956, 6.16862100960228138437264922416, 6.69344832447220363833996743583, 6.91196014220385073134643908580, 7.34927671293210359354178302810, 7.62681910073560329533321596098, 8.308214659363619700251168385294, 8.428602581108460320200220546494