Properties

Label 3264.2.c.f
Level 32643264
Weight 22
Character orbit 3264.c
Analytic conductor 26.06326.063
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3264,2,Mod(577,3264)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3264.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3264=26317 3264 = 2^{6} \cdot 3 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3264.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.063171219726.0631712197
Analytic rank: 11
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1632)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qiq3+2iq5+2iq7q92q13+2q15+(4i1)q174q19+2q21+2iq23+q25+iq27+2iq29+2iq314q352iq37+2iq39+4iq97+O(q100) q - i q^{3} + 2 i q^{5} + 2 i q^{7} - q^{9} - 2 q^{13} + 2 q^{15} + ( - 4 i - 1) q^{17} - 4 q^{19} + 2 q^{21} + 2 i q^{23} + q^{25} + i q^{27} + 2 i q^{29} + 2 i q^{31} - 4 q^{35} - 2 i q^{37} + 2 i q^{39} + \cdots - 4 i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q94q13+4q152q178q19+4q21+2q258q3516q43+6q498q514q538q5924q67+4q69+2q8124q83+16q85++4q93+O(q100) 2 q - 2 q^{9} - 4 q^{13} + 4 q^{15} - 2 q^{17} - 8 q^{19} + 4 q^{21} + 2 q^{25} - 8 q^{35} - 16 q^{43} + 6 q^{49} - 8 q^{51} - 4 q^{53} - 8 q^{59} - 24 q^{67} + 4 q^{69} + 2 q^{81} - 24 q^{83} + 16 q^{85}+ \cdots + 4 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3264Z)×\left(\mathbb{Z}/3264\mathbb{Z}\right)^\times.

nn 511511 21772177 22452245 26892689
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
577.1
1.00000i
1.00000i
0 1.00000i 0 2.00000i 0 2.00000i 0 −1.00000 0
577.2 0 1.00000i 0 2.00000i 0 2.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3264.2.c.f 2
4.b odd 2 1 3264.2.c.c 2
8.b even 2 1 1632.2.c.b yes 2
8.d odd 2 1 1632.2.c.a 2
17.b even 2 1 inner 3264.2.c.f 2
24.f even 2 1 4896.2.c.b 2
24.h odd 2 1 4896.2.c.c 2
68.d odd 2 1 3264.2.c.c 2
136.e odd 2 1 1632.2.c.a 2
136.h even 2 1 1632.2.c.b yes 2
408.b odd 2 1 4896.2.c.c 2
408.h even 2 1 4896.2.c.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1632.2.c.a 2 8.d odd 2 1
1632.2.c.a 2 136.e odd 2 1
1632.2.c.b yes 2 8.b even 2 1
1632.2.c.b yes 2 136.h even 2 1
3264.2.c.c 2 4.b odd 2 1
3264.2.c.c 2 68.d odd 2 1
3264.2.c.f 2 1.a even 1 1 trivial
3264.2.c.f 2 17.b even 2 1 inner
4896.2.c.b 2 24.f even 2 1
4896.2.c.b 2 408.h even 2 1
4896.2.c.c 2 24.h odd 2 1
4896.2.c.c 2 408.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3264,[χ])S_{2}^{\mathrm{new}}(3264, [\chi]):

T52+4 T_{5}^{2} + 4 Copy content Toggle raw display
T13+2 T_{13} + 2 Copy content Toggle raw display
T19+4 T_{19} + 4 Copy content Toggle raw display
T43+8 T_{43} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2+4 T^{2} + 4 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1717 T2+2T+17 T^{2} + 2T + 17 Copy content Toggle raw display
1919 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2323 T2+4 T^{2} + 4 Copy content Toggle raw display
2929 T2+4 T^{2} + 4 Copy content Toggle raw display
3131 T2+4 T^{2} + 4 Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
5959 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
6161 T2+36 T^{2} + 36 Copy content Toggle raw display
6767 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
7171 T2+4 T^{2} + 4 Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2+100 T^{2} + 100 Copy content Toggle raw display
8383 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
8989 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
9797 T2+16 T^{2} + 16 Copy content Toggle raw display
show more
show less