Properties

Label 3264.2
Level 3264
Weight 2
Dimension 122892
Nonzero newspaces 68
Sturm bound 1179648
Trace bound 65

Downloads

Learn more

Defining parameters

Level: N N = 3264=26317 3264 = 2^{6} \cdot 3 \cdot 17
Weight: k k = 2 2
Nonzero newspaces: 68 68
Sturm bound: 11796481179648
Trace bound: 6565

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(3264))M_{2}(\Gamma_1(3264)).

Total New Old
Modular forms 299520 124212 175308
Cusp forms 290305 122892 167413
Eisenstein series 9215 1320 7895

Trace form

122892q84q3224q4112q6176q7140q9224q1016q11112q12256q1396q15224q1616q17240q18200q19104q21192q22+200q99+O(q100) 122892 q - 84 q^{3} - 224 q^{4} - 112 q^{6} - 176 q^{7} - 140 q^{9} - 224 q^{10} - 16 q^{11} - 112 q^{12} - 256 q^{13} - 96 q^{15} - 224 q^{16} - 16 q^{17} - 240 q^{18} - 200 q^{19} - 104 q^{21} - 192 q^{22}+ \cdots - 200 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(3264))S_{2}^{\mathrm{new}}(\Gamma_1(3264))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
3264.2.a χ3264(1,)\chi_{3264}(1, \cdot) 3264.2.a.a 1 1
3264.2.a.b 1
3264.2.a.c 1
3264.2.a.d 1
3264.2.a.e 1
3264.2.a.f 1
3264.2.a.g 1
3264.2.a.h 1
3264.2.a.i 1
3264.2.a.j 1
3264.2.a.k 1
3264.2.a.l 1
3264.2.a.m 1
3264.2.a.n 1
3264.2.a.o 1
3264.2.a.p 1
3264.2.a.q 1
3264.2.a.r 1
3264.2.a.s 1
3264.2.a.t 1
3264.2.a.u 1
3264.2.a.v 1
3264.2.a.w 1
3264.2.a.x 1
3264.2.a.y 1
3264.2.a.z 1
3264.2.a.ba 1
3264.2.a.bb 1
3264.2.a.bc 1
3264.2.a.bd 1
3264.2.a.be 1
3264.2.a.bf 1
3264.2.a.bg 2
3264.2.a.bh 2
3264.2.a.bi 2
3264.2.a.bj 2
3264.2.a.bk 2
3264.2.a.bl 2
3264.2.a.bm 2
3264.2.a.bn 2
3264.2.a.bo 2
3264.2.a.bp 2
3264.2.a.bq 3
3264.2.a.br 3
3264.2.a.bs 3
3264.2.a.bt 3
3264.2.c χ3264(577,)\chi_{3264}(577, \cdot) 3264.2.c.a 2 1
3264.2.c.b 2
3264.2.c.c 2
3264.2.c.d 2
3264.2.c.e 2
3264.2.c.f 2
3264.2.c.g 2
3264.2.c.h 2
3264.2.c.i 2
3264.2.c.j 2
3264.2.c.k 4
3264.2.c.l 4
3264.2.c.m 4
3264.2.c.n 6
3264.2.c.o 6
3264.2.c.p 8
3264.2.c.q 10
3264.2.c.r 10
3264.2.e χ3264(2687,)\chi_{3264}(2687, \cdot) n/a 128 1
3264.2.f χ3264(1633,)\chi_{3264}(1633, \cdot) 3264.2.f.a 2 1
3264.2.f.b 2
3264.2.f.c 4
3264.2.f.d 4
3264.2.f.e 4
3264.2.f.f 8
3264.2.f.g 8
3264.2.f.h 8
3264.2.f.i 8
3264.2.f.j 16
3264.2.h χ3264(1631,)\chi_{3264}(1631, \cdot) n/a 144 1
3264.2.j χ3264(1055,)\chi_{3264}(1055, \cdot) n/a 128 1
3264.2.l χ3264(2209,)\chi_{3264}(2209, \cdot) 3264.2.l.a 4 1
3264.2.l.b 4
3264.2.l.c 8
3264.2.l.d 8
3264.2.l.e 24
3264.2.l.f 24
3264.2.o χ3264(3263,)\chi_{3264}(3263, \cdot) n/a 140 1
3264.2.r χ3264(47,)\chi_{3264}(47, \cdot) n/a 280 2
3264.2.s χ3264(625,)\chi_{3264}(625, \cdot) n/a 144 2
3264.2.u χ3264(817,)\chi_{3264}(817, \cdot) n/a 128 2
3264.2.w χ3264(815,)\chi_{3264}(815, \cdot) n/a 280 2
3264.2.y χ3264(863,)\chi_{3264}(863, \cdot) n/a 288 2
3264.2.ba χ3264(1441,)\chi_{3264}(1441, \cdot) n/a 144 2
3264.2.bd χ3264(769,)\chi_{3264}(769, \cdot) n/a 144 2
3264.2.bf χ3264(191,)\chi_{3264}(191, \cdot) n/a 280 2
3264.2.bh χ3264(239,)\chi_{3264}(239, \cdot) n/a 256 2
3264.2.bj χ3264(1393,)\chi_{3264}(1393, \cdot) n/a 144 2
3264.2.bl χ3264(1585,)\chi_{3264}(1585, \cdot) n/a 144 2
3264.2.bm χ3264(1007,)\chi_{3264}(1007, \cdot) n/a 280 2
3264.2.bp χ3264(1511,)\chi_{3264}(1511, \cdot) None 0 4
3264.2.br χ3264(553,)\chi_{3264}(553, \cdot) None 0 4
3264.2.bt χ3264(455,)\chi_{3264}(455, \cdot) None 0 4
3264.2.bv χ3264(1033,)\chi_{3264}(1033, \cdot) None 0 4
3264.2.bx χ3264(263,)\chi_{3264}(263, \cdot) None 0 4
3264.2.bz χ3264(457,)\chi_{3264}(457, \cdot) None 0 4
3264.2.cc χ3264(961,)\chi_{3264}(961, \cdot) n/a 288 4
3264.2.cd χ3264(383,)\chi_{3264}(383, \cdot) n/a 560 4
3264.2.ce χ3264(1103,)\chi_{3264}(1103, \cdot) n/a 560 4
3264.2.cf χ3264(433,)\chi_{3264}(433, \cdot) n/a 288 4
3264.2.ci χ3264(169,)\chi_{3264}(169, \cdot) None 0 4
3264.2.cj χ3264(647,)\chi_{3264}(647, \cdot) None 0 4
3264.2.cm χ3264(407,)\chi_{3264}(407, \cdot) None 0 4
3264.2.cn χ3264(409,)\chi_{3264}(409, \cdot) None 0 4
3264.2.cq χ3264(1487,)\chi_{3264}(1487, \cdot) n/a 560 4
3264.2.cr χ3264(49,)\chi_{3264}(49, \cdot) n/a 288 4
3264.2.cu χ3264(865,)\chi_{3264}(865, \cdot) n/a 288 4
3264.2.cv χ3264(287,)\chi_{3264}(287, \cdot) n/a 576 4
3264.2.cz χ3264(25,)\chi_{3264}(25, \cdot) None 0 4
3264.2.db χ3264(1607,)\chi_{3264}(1607, \cdot) None 0 4
3264.2.dc χ3264(217,)\chi_{3264}(217, \cdot) None 0 4
3264.2.de χ3264(1271,)\chi_{3264}(1271, \cdot) None 0 4
3264.2.dh χ3264(121,)\chi_{3264}(121, \cdot) None 0 4
3264.2.dj χ3264(359,)\chi_{3264}(359, \cdot) None 0 4
3264.2.dm χ3264(197,)\chi_{3264}(197, \cdot) n/a 4576 8
3264.2.dn χ3264(403,)\chi_{3264}(403, \cdot) n/a 2304 8
3264.2.do χ3264(229,)\chi_{3264}(229, \cdot) n/a 2304 8
3264.2.dq χ3264(563,)\chi_{3264}(563, \cdot) n/a 4576 8
3264.2.ds χ3264(139,)\chi_{3264}(139, \cdot) n/a 2304 8
3264.2.dt χ3264(317,)\chi_{3264}(317, \cdot) n/a 4576 8
3264.2.dx χ3264(113,)\chi_{3264}(113, \cdot) n/a 1120 8
3264.2.dy χ3264(79,)\chi_{3264}(79, \cdot) n/a 576 8
3264.2.eb χ3264(7,)\chi_{3264}(7, \cdot) None 0 8
3264.2.ec χ3264(233,)\chi_{3264}(233, \cdot) None 0 8
3264.2.ee χ3264(467,)\chi_{3264}(467, \cdot) n/a 4576 8
3264.2.eg χ3264(349,)\chi_{3264}(349, \cdot) n/a 2304 8
3264.2.ek χ3264(245,)\chi_{3264}(245, \cdot) n/a 4576 8
3264.2.el χ3264(283,)\chi_{3264}(283, \cdot) n/a 2304 8
3264.2.eo χ3264(29,)\chi_{3264}(29, \cdot) n/a 4576 8
3264.2.ep χ3264(91,)\chi_{3264}(91, \cdot) n/a 2304 8
3264.2.eq χ3264(499,)\chi_{3264}(499, \cdot) n/a 2304 8
3264.2.er χ3264(437,)\chi_{3264}(437, \cdot) n/a 4576 8
3264.2.ew χ3264(205,)\chi_{3264}(205, \cdot) n/a 2048 8
3264.2.ex χ3264(203,)\chi_{3264}(203, \cdot) n/a 4576 8
3264.2.ez χ3264(65,)\chi_{3264}(65, \cdot) n/a 1120 8
3264.2.fa χ3264(703,)\chi_{3264}(703, \cdot) n/a 576 8
3264.2.fc χ3264(41,)\chi_{3264}(41, \cdot) None 0 8
3264.2.ff χ3264(199,)\chi_{3264}(199, \cdot) None 0 8
3264.2.fg χ3264(13,)\chi_{3264}(13, \cdot) n/a 2304 8
3264.2.fh χ3264(251,)\chi_{3264}(251, \cdot) n/a 4576 8
3264.2.fm χ3264(157,)\chi_{3264}(157, \cdot) n/a 2304 8
3264.2.fn χ3264(395,)\chi_{3264}(395, \cdot) n/a 4576 8
3264.2.fo χ3264(473,)\chi_{3264}(473, \cdot) None 0 8
3264.2.fr χ3264(1159,)\chi_{3264}(1159, \cdot) None 0 8
3264.2.ft χ3264(31,)\chi_{3264}(31, \cdot) n/a 576 8
3264.2.fu χ3264(737,)\chi_{3264}(737, \cdot) n/a 1152 8
3264.2.fw χ3264(35,)\chi_{3264}(35, \cdot) n/a 4096 8
3264.2.fx χ3264(373,)\chi_{3264}(373, \cdot) n/a 2304 8
3264.2.ga χ3264(581,)\chi_{3264}(581, \cdot) n/a 4576 8
3264.2.gb χ3264(163,)\chi_{3264}(163, \cdot) n/a 2304 8
3264.2.ge χ3264(325,)\chi_{3264}(325, \cdot) n/a 2304 8
3264.2.gg χ3264(155,)\chi_{3264}(155, \cdot) n/a 4576 8
3264.2.gi χ3264(439,)\chi_{3264}(439, \cdot) None 0 8
3264.2.gl χ3264(1193,)\chi_{3264}(1193, \cdot) None 0 8
3264.2.gn χ3264(401,)\chi_{3264}(401, \cdot) n/a 1120 8
3264.2.go χ3264(367,)\chi_{3264}(367, \cdot) n/a 576 8
3264.2.gq χ3264(379,)\chi_{3264}(379, \cdot) n/a 2304 8
3264.2.gr χ3264(5,)\chi_{3264}(5, \cdot) n/a 4576 8
3264.2.gu χ3264(59,)\chi_{3264}(59, \cdot) n/a 4576 8
3264.2.gw χ3264(253,)\chi_{3264}(253, \cdot) n/a 2304 8
3264.2.ha χ3264(547,)\chi_{3264}(547, \cdot) n/a 2304 8
3264.2.hb χ3264(533,)\chi_{3264}(533, \cdot) n/a 4576 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(3264))S_{2}^{\mathrm{old}}(\Gamma_1(3264)) into lower level spaces

S2old(Γ1(3264)) S_{2}^{\mathrm{old}}(\Gamma_1(3264)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))28^{\oplus 28}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))24^{\oplus 24}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))14^{\oplus 14}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))20^{\oplus 20}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))16^{\oplus 16}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))10^{\oplus 10}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))12^{\oplus 12}\oplusS2new(Γ1(17))S_{2}^{\mathrm{new}}(\Gamma_1(17))14^{\oplus 14}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))8^{\oplus 8}\oplusS2new(Γ1(32))S_{2}^{\mathrm{new}}(\Gamma_1(32))8^{\oplus 8}\oplusS2new(Γ1(34))S_{2}^{\mathrm{new}}(\Gamma_1(34))12^{\oplus 12}\oplusS2new(Γ1(48))S_{2}^{\mathrm{new}}(\Gamma_1(48))6^{\oplus 6}\oplusS2new(Γ1(51))S_{2}^{\mathrm{new}}(\Gamma_1(51))7^{\oplus 7}\oplusS2new(Γ1(64))S_{2}^{\mathrm{new}}(\Gamma_1(64))4^{\oplus 4}\oplusS2new(Γ1(68))S_{2}^{\mathrm{new}}(\Gamma_1(68))10^{\oplus 10}\oplusS2new(Γ1(96))S_{2}^{\mathrm{new}}(\Gamma_1(96))4^{\oplus 4}\oplusS2new(Γ1(102))S_{2}^{\mathrm{new}}(\Gamma_1(102))6^{\oplus 6}\oplusS2new(Γ1(136))S_{2}^{\mathrm{new}}(\Gamma_1(136))8^{\oplus 8}\oplusS2new(Γ1(192))S_{2}^{\mathrm{new}}(\Gamma_1(192))2^{\oplus 2}\oplusS2new(Γ1(204))S_{2}^{\mathrm{new}}(\Gamma_1(204))5^{\oplus 5}\oplusS2new(Γ1(272))S_{2}^{\mathrm{new}}(\Gamma_1(272))6^{\oplus 6}\oplusS2new(Γ1(408))S_{2}^{\mathrm{new}}(\Gamma_1(408))4^{\oplus 4}\oplusS2new(Γ1(544))S_{2}^{\mathrm{new}}(\Gamma_1(544))4^{\oplus 4}\oplusS2new(Γ1(816))S_{2}^{\mathrm{new}}(\Gamma_1(816))3^{\oplus 3}\oplusS2new(Γ1(1088))S_{2}^{\mathrm{new}}(\Gamma_1(1088))2^{\oplus 2}\oplusS2new(Γ1(1632))S_{2}^{\mathrm{new}}(\Gamma_1(1632))2^{\oplus 2}