Defining parameters
Level: | \( N \) | \(=\) | \( 3264 = 2^{6} \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3264.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(1152\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(5\), \(13\), \(19\), \(43\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3264, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 600 | 72 | 528 |
Cusp forms | 552 | 72 | 480 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3264, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(3264, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3264, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(408, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(544, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(816, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1088, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1632, [\chi])\)\(^{\oplus 2}\)